131 resultados para single-stranded DNA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the study of a large American family displaying autosomal dominant retinitis pigmentosa with reduced penetrance, a form of hereditary retinal degeneration. Although the inheritance pattern and previous linkage mapping pointed to the involvement of the PRPF31 gene, extensive screening of all its exons and their boundaries failed in the past to reveal any mutation. In this work, we sequenced the entire PRPF31 genomic region by both the classical Sanger method and ultrahigh throughput (UHT) sequencing. Among the many variants identified, a single-base substitution (c.1374+654C>G) located deep within intron 13 and inside a repetitive DNA element was common to all patients and obligate asymptomatic carriers. This change created a new splice donor site leading to the synthesis of two mutant PRPF31 isoforms, degraded by nonsense-mediated mRNA decay. As a consequence, amounts of PRPF31 mRNA derived from the mutant allele were very reduced, with no evidence of mutant proteins being synthesized. Our results indicate that c.1374+654C>G causes retinitis pigmentosa via haploinsufficiency, similar to the vast majority of PRPF31 mutations described so far. We discuss the potential of UHT sequencing technologies in mutation screening and the continued identification of pathogenic splicing mutations buried deep within intronic regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gesneriaceae are represented in the New World (NW) by a major clade (c. 1000 species) currently recognized as subfamily Gesnerioideae. Radiation of this group occurred in all biomes of tropical America and was accompanied by extensive phenotypic and ecological diversification. Here we performed phylogenetic analyses using DNA sequences from three plastid loci to reconstruct the evolutionary history of Gesnerioideae and to investigate its relationship with other lineages of Gesneriaceae and Lamiales. Our molecular data confirm the inclusion of the South Pacific Coronanthereae and the Old World (OW) monotypic genus Titanotrichum in Gesnerioideae and the sister-group relationship of this subfamily to the rest of the OW Gesneriaceae. Calceolariaceae and the NW genera Peltanthera and Sanango appeared successively sister to Gesneriaceae, whereas Cubitanthus, which has been previously assigned to Gesneriaceae, is shown to be related to Linderniaceae. Based on molecular dating and biogeographical reconstruction analyses, we suggest that ancestors of Gesneriaceae originated in South America during the Late Cretaceous. Distribution of Gesneriaceae in the Palaeotropics and Australasia was inferred as resulting from two independent long-distance dispersals during the Eocene and Oligocene, respectively. In a short time span starting at 34 Mya, ancestors of Gesnerioideae colonized several Neotropical regions including the tropical Andes, Brazilian Atlantic forest, cerrado, Central America and the West Indies. Subsequent diversification within these areas occurred largely in situ and was particularly extensive in the mountainous systems of the Andes, Central America and the Brazilian Atlantic forest. Only two radiations account for 90% of the diversity of Gesneriaceae in the Brazilian Atlantic forest, whereas half of the species richness in the northern Andes and Central America originated during the last 10 Myr from a single radiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-chromosome inactivation (XCI) is a dosage compensation mechanism that silences the majority of genes on one X chromosome in each female cell. To characterize epigenetic changes that accompany this process, we measured DNA methylation levels in 45,X patients carrying a single active X chromosome (X(a)), and in normal females, who carry one X(a) and one inactive X (X(i)). Methylated DNA was immunoprecipitated and hybridized to high-density oligonucleotide arrays covering the X chromosome, generating epigenetic profiles of active and inactive X chromosomes. We observed that XCI is accompanied by changes in DNA methylation specifically at CpG islands (CGIs). While the majority of CGIs show increased methylation levels on the X(i), XCI actually results in significant reductions in methylation at 7% of CGIs. Both intra- and inter-genic CGIs undergo epigenetic modification, with the biggest increase in methylation occurring at the promoters of genes silenced by XCI. In contrast, genes escaping XCI generally have low levels of promoter methylation, while genes that show inter-individual variation in silencing show intermediate increases in methylation. Thus, promoter methylation and susceptibility to XCI are correlated. We also observed a global correlation between CGI methylation and the evolutionary age of X-chromosome strata, and that genes escaping XCI show increased methylation within gene bodies. We used our epigenetic map to predict 26 novel genes escaping XCI, and searched for parent-of-origin-specific methylation differences, but found no evidence to support imprinting on the human X chromosome. Our study provides a detailed analysis of the epigenetic profile of active and inactive X chromosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA methylation is involved in a diversity of processes in bacteria, including maintenance of genome integrity and regulation of gene expression. Here, using Caulobacter crescentus as a model, we exploit genome-wide experimental methods to uncover the functions of CcrM, a DNA methyltransferase conserved in most Alphaproteobacteria. Using single molecule sequencing, we provide evidence that most CcrM target motifs (GANTC) switch from a fully methylated to a hemi-methylated state when they are replicated, and back to a fully methylated state at the onset of cell division. We show that DNA methylation by CcrM is not required for the control of the initiation of chromosome replication or for DNA mismatch repair. By contrast, our transcriptome analysis shows that >10% of the genes are misexpressed in cells lacking or constitutively over-expressing CcrM. Strikingly, GANTC methylation is needed for the efficient transcription of dozens of genes that are essential for cell cycle progression, in particular for DNA metabolism and cell division. Many of them are controlled by promoters methylated by CcrM and co-regulated by other global cell cycle regulators, demonstrating an extensive cross talk between DNA methylation and the complex regulatory network that controls the cell cycle of C. crescentus and, presumably, of many other Alphaproteobacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The action of individual type II DNA topoisomerases has been followed in real time by observing the elastic response of single DNA molecules to sequential strand passage events. Micromanipulation methods provide a complementary approach to biochemical studies for investigating the mechanism of DNA topoisomerases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Combination highly active antiretroviral therapy (HAART) has significantly decreased HIV-1 related morbidity and mortality globally transforming HIV into a controllable condition. HAART has a number of limitations though, including limited access in resource constrained countries, which have driven the search for simpler, affordable HIV-1 treatment modalities. Therapeutic HIV-1 vaccines aim to provide immunological support to slow disease progression and decrease transmission. We evaluated the safety, immunogenicity and clinical effect of a novel recombinant plasmid DNA therapeutic HIV-1 vaccine, GTU(®)-multi-HIVB, containing 6 different genes derived from an HIV-1 subtype B isolate. METHODS: 63 untreated, healthy, HIV-1 infected, adults between 18 and 40 years were enrolled in a single-blinded, placebo-controlled Phase II trial in South Africa. Subjects were HIV-1 subtype C infected, had never received antiretrovirals, with CD4 ≥ 350 cells/mm(3) and pHIV-RNA ≥ 50 copies/mL at screening. Subjects were allocated to vaccine or placebo groups in a 2:1 ratio either administered intradermally (ID) (0.5mg/dose) or intramuscularly (IM) (1mg/dose) at 0, 4 and 12 weeks boosted at 76 and 80 weeks with 1mg/dose (ID) and 2mg/dose (IM), respectively. Safety was assessed by adverse event monitoring and immunogenicity by HIV-1-specific CD4+ and CD8+ T-cells using intracellular cytokine staining (ICS), pHIV-RNA and CD4 counts. RESULTS: Vaccine was safe and well tolerated with no vaccine related serious adverse events. Significant declines in log pHIV-RNA (p=0.012) and increases in CD4+ T cell counts (p=0.066) were observed in the vaccine group compared to placebo, more pronounced after IM administration and in some HLA haplotypes (B*5703) maintained for 17 months after the final immunisation. CONCLUSIONS: The GTU(®)-multi-HIVB plasmid recombinant DNA therapeutic HIV-1 vaccine is safe, well tolerated and favourably affects pHIV-RNA and CD4 counts in untreated HIV-1 infected individuals after IM administration in subjects with HLA B*57, B*8101 and B*5801 haplotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Little information is available on resistance to anti-malarial drugs in the Solomon Islands (SI). The analysis of single nucleotide polymorphisms (SNPs) in drug resistance associated parasite genes is a potential alternative to classical time- and resource-consuming in vivo studies to monitor drug resistance. Mutations in pfmdr1 and pfcrt were shown to indicate chloroquine (CQ) resistance, mutations in pfdhfr and pfdhps indicate sulphadoxine-pyrimethamine (SP) resistance, and mutations in pfATPase6 indicate resistance to artemisinin derivatives. METHODS: The relationship between the rate of treatment failure among 25 symptomatic Plasmodium falciparum-infected patients presenting at the clinic and the pattern of resistance-associated SNPs in P. falciparum infecting 76 asymptomatic individuals from the surrounding population was investigated. The study was conducted in the SI in 2004. Patients presenting at a local clinic with microscopically confirmed P. falciparum malaria were recruited and treated with CQ+SP. Rates of treatment failure were estimated during a 28-day follow-up period. In parallel, a DNA microarray technology was used to analyse mutations associated with CQ, SP, and artemisinin derivative resistance among samples from the asymptomatic community. Mutation and haplotype frequencies were determined, as well as the multiplicity of infection. RESULTS: The in vivo study showed an efficacy of 88% for CQ+SP to treat P. falciparum infections. DNA microarray analyses indicated a low diversity in the parasite population with one major haplotype present in 98.7% of the cases. It was composed of fixed mutations at position 86 in pfmdr1, positions 72, 75, 76, 220, 326 and 356 in pfcrt, and positions 59 and 108 in pfdhfr. No mutation was observed in pfdhps or in pfATPase6. The mean multiplicity of infection was 1.39. CONCLUSION: This work provides the first insight into drug resistance markers of P. falciparum in the SI. The obtained results indicated the presence of a very homogenous P. falciparum population circulating in the community. Although CQ+SP could still clear most infections, seven fixed mutations associated with CQ resistance and two fixed mutations related to SP resistance were observed. Whether the absence of mutations in pfATPase6 indicates the efficacy of artemisinin derivatives remains to be proven.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

African clawed frogs of the widespread polytypic species Xenopus laevis Daudin, 1802 (ranging large parts of sub-Saharan Africa) have been spreading since the 1940s, and have established reproductive populations in Europe, Asia and the Americas, where they can have negative impact as competitors of native amphibians and as disease vectors for chytridomycosis or ranaviruses. Here we use two mitochondrial (cytochrome b, 16S rDNA) and one nuclear (RAG 1: Recombination Associated Gene 1) DNA markers to infer the potential origin of invasive clawed frogs from Sicily that represent the largest invasive population in Europe. Identical mtDNA haplotypes match with those of Xenopus laevis, and Sicilian clawed frogs very probably belong to a lineage from the Cape Region of South Africa, most likely originating from a laboratory stock. Nuclear data support this conclusion. Identical mtDNA sequences (cyt b, 16S) of frogs sampled across their range in Sicily suggest the occurrence of a single source population and a potential bottleneck at their release, but faster evolving multilocus nuclear data (microsatellites, SNPs) on the population genetics would be important in the future to better support this hypothesis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d'être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many DNA helicases utilise the energy derived from nucleoside triphosphate hydrolysis to fuel their actions as molecular motors in a variety of biological processes. In association with RuvA, the E. coli RuvB protein (a hexameric ring helicase), promotes the branch migration of Holliday junctions during genetic recombination and DNA repair. To analyse the relationship between ATP-dependent DNA helicase activity and branch migration, a site-directed mutation was introduced into the helicase II motif of RuvB. Over-expression of RuvBD113N in wild-type E. coli resulted in a dominant negative UVs phenotype. The biochemical properties of RuvBD113N were examined and compared with wild-type RuvB in vitro. The single amino acid substitution resulted in major alterations to the biochemical activities of RuvB, such that RuvBD113N was defective in DNA binding and ATP hydrolysis, while retaining the ability to form hexameric rings and interact with RuvA. RuvBD113N formed heterohexamers with wild-type RuvB, and could inhibit RuvB function by affecting its ability to bind DNA. However, heterohexamers exhibited an ability to promote branch migration in vitro indicating that not all subunits of the ring need to be catalytically competent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete mitochondrial DNA (mtDNA) control region was amplified and directly sequenced in two species of shrew, Crocidura russula and Sorex araneus (Insectivora, Mammalia). The general organization is similar to that found in other mammals: a central conserved region surrounded by two more variable domains. However, we have found in shrews the simultaneous presence of arrays of tandem repeats in potential locations where repeats tend to occur separately in other mammalian species. These locations correspond to regions which are associated with a possible interruption of the replication processes, either at the end of the three-stranded D-loop structure or toward the end of the heavy-strand replication. In the left domain the repeated sequences (R1 repeats) are 78 bp long, whereas in the right domain the repeats are 12 bp long in C. russula and 14 bp long in S. araneus (R2 repeats). Variation in the copy number of these repeated sequences results in mtDNA control region length differences. Southern blot analysis indicates that level of heteroplasmy (more than one mtDNA form within an individual) differs between species. A comparative study of the R2 repeats in 12 additional species representing three shrew subfamilies provides useful indications for the understanding of the origin and the evolution of these homologous tandemly repeated sequences. An asymmetry in the distribution of variants within the arrays, as well as the constant occurrence of shorter repeated sequences flanking only one side of the R2 arrays, could be related to asymmetry in the replication of each strand of the mtDNA molecule. The pattern of sequence and length variation within and between species, together with the capability of the arrays to form stable secondary structures, suggests that the dominant mechanism involved in the evolution of these arrays in unidirectional replication slippage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The estrogen-responsive element (ERE) present in the 5'-flanking region of the Xenopus laevis vitellogenin (vit) gene B1 has been characterized by transient expression analysis of chimeric vit-tk-CAT (chloramphenicol acetyltransferase) gene constructs transfected into the human estrogen-responsive MCF-7 cell line. The vit B1 ERE behaves like an inducible enhancer, since it is able to confer estrogen inducibility to the heterologous HSV thymidine kinase (tk) promoter in a relative position- and orientation-independent manner. In this assay, the minimal B1 ERE is 33 bp long and consists of two 13 bp imperfect palindromic elements both of which are required for the enhancer activity. A third imperfect palindromic element is present further upstream within the 5'-flanking region of the gene but is unable to confer hormone responsiveness by itself. Similarly, neither element forming the B1 ERE can alone confer estrogen inducibility to the tk promoter. However, in combinations of two, all three imperfect palindromes can act cooperatively to form a functional ERE. In contrast a single 13 bp perfect palindromic element, GGTCACTGTGACC, such as the one found upstream of the vit gene A2, is itself sufficient to act as a fully active ERE. Single point mutations within this element abolish estrogen inducibility, while a defined combination of two mutations converts this ERE into a glucocorticoid-responsive element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intracellular location of nucleic acid sensors prevents recognition of extracellular self-DNA released by dying cells. However, on forming a complex with the endogenous antimicrobial peptide LL37, extracellular DNA is transported into endosomal compartments of plasmacytoid dendritic cells, leading to activation of Toll-like receptor-9 and induction of type I IFNs. Whether LL37 also transports self-DNA into nonplasmacytoid dendritic cells, leading to type I IFN production via other intracellular DNA receptors is unknown. Here we found that LL37 very efficiently transports self-DNA into monocytes, leading the production of type I IFNs in a Toll-like receptor-independent manner. This type I IFN induction was mediated by double-stranded B form DNA, regardless of its sequence, CpG content, or methylation status, and required signaling through the adaptor protein STING and TBK1 kinase, indicating the involvement of cytosolic DNA sensors. Thus, our study identifies a novel link between the antimicrobial peptides and type I IFN responses involving DNA-dependent activation of cytosolic sensors in monocytes.