198 resultados para non-human primate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cytochemical marker such as alpha-naphthyl acetate esterase (ANAE) has been found useful for the morphological identification of the subset of T lymphocytes having receptors for Fcμ (TM cells). ANAE reaction on TM cells gives a typical pattern of one to four positive spots, whereas this pattern is not found on T cells with receptors for Fcγ (TG cells). ANAE is abundant in monocytes but not detectable in granulocytes. Herein another type of esterase activity, naphthol-AS-D chloroacetate esterase (NCAE), is described; it is known to be abundant in granulocytes and was found to give a specific pattern of reactivity with the subpopulation of large granular lymphocytes (LGL). This pattern of fine granular staining was observed not only on LGL present in the TG cell subpopulation but also in LGL present in the non-T, non-B cells. Fractions of peripheral blood mononuclear cells which were ènriched up to 80% in LGL by Percoll discontinuous density gradient gave a similar percentage of specific NCAE pattern. In addition, among the different fractions from Percoll gradient, there was a good correlation (r = 0.94) between the number of NCAE-positive cells and the natural killer activity against the natural killer susceptible K562 target cells. It will be important to determine whether or not this enzymatic activity plays a role in the cytotoxic activities of LGL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Poor outcome for glioblastoma patients is largely due to resistance to chemoradiation therapy. While epigenetic inactivation of MGMT mediated DNA repair is highly predictive for benefit from the alkylating agent therapy Temozolomide, additional mechanisms for resistance associated with molecular alterations exist. Furthermore, new concepts in cancer suggest that resistance to treatment may be linked to cancer stem cells that escape therapy and act as source for tumour recurrence. We determined gene expression signatures associated with outcome in glioblastoma patients enrolled in a phase II and phase III clinical trial establishing the new combination therapy of radiation plus concomitant and adjuvant Temozolomide. Correlating stable gene clusters emerging from unsupervised analysis with survival of 42 treated patients identified a number of biological processes associated with outcome. Most prominent, a gene cluster dominated by HOX genes and comprising PROM1, was associated with resistance. PROM1 encodes CD133, a marker for a subpopulation of tumour cells enriched for glioblastoma stem- like cells. The core of this correlated HOX cluster was comprised in the top genes of a "self-renewal signature" defined in a mouse model for MLL-AF9 initiated leukaemia. The association of the HOX gene cluster with tumour resistance was confirmed in two external data sets of 146 malignant glioma As additional resistance factors we identified over-expression of the epidermal growth factor receptor gene, EGFR, while increased gene expression related to biological features of tumour host interaction, including markers for tumour vascular and cell adhesion, and innate immune response, were associated with better outcome. The "self-renewal" signature associated with resistance to the new combination chemoradiation therapy provides first clinical evidence that glioma stem like cells may implicated in resistance in a uniformly treated cohort of glioblastoma patients. This study underlines the need to target the tumour stem cell compartment, and provides some testable hypothesis for biological mechanisms relevant for malignant behaviour of glioblastoma that may be targeted in new treatment approaches. Résumé Le glioblastome, tumeur cérébrale primaire maligne la plus fréquente, est connue pour son mauvais pronostique. Des avancées chimiothérapeutiques récentes avec des agents alkylants comme le témozolomide (TMZ), ont permis une amélioration notable dans la survie de certains patients. Les bénéficiaires ont la caractéristique commune de présenter une particularité génétique, la methylation du MGMT (methylguanine methyltransferase). Néanmoins, d'autres mécanismes de résistance en fonction des aberrations moléculaires existent. Nous avons établi les profils d'expressions génétiques des patients traités par irradiation et TMZ dans des études cliniques de phase II et III. En combinant des méthodes non-supervisées et supervisées, de l'étude de la cohorte des patients traités nous avons découvert des groupes de gènes associés à la survie. Un ensemble de gènes contenant les gènes Hox semble lié au mécanisme de résistance au traitement. Récemment, les gènes Hox ont été décrits comme faisant partie d"une signature d'autorenouvellement (self-renewal) des cellules souches cancéreuses de la leucémie. L'autorenouvellement est un processus grâce auquel les cellules souches se maintiennent tout au long de la vie. Cette association à la résistance est confirmée dans deux autres études indépendantes. Un autre facteur de résistance au traitement est la surexpression du gène EGFR. D'autre part, deux groupes de gènes associés à la relation entre hôte-tumeur tels que les marqueurs des vaisseaux tumoraux et de la réponse immunitaire innée s'avèrent avoir un effet positif sur la survie des patients traités. La découverte de la signature d'autorenouvellement comme facteur de résistance à la nouvelle chimio-radiothérapie offre une preuve clinique que les cellules souches cancéreuses sont impliquées dans la résistance au traitement. If est donc logique de penser que le traitement ciblé contre des cellules souches cancéreuses va dans l'avenir permettre des thérapies anticancéreuses plus performantes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-steroidal anti-inflammatory drugs (NSAIDs) and specific inhibitors of cyclooxygenase (COX)-2, are therapeutic groups widely used for the treatment of pain, inflammation and fever. There is growing experimental and clinical evidence indicating NSAIDs and COX-2 inhibitors also have anti-cancer activity. Epidemiological studies have shown that regular use of Aspirin and other NSAIDs reduces the risk of developing cancer, in particular of the colon. Molecular pathology studies have revealed that COX-2 is expressed by cancer cells and cells of the tumor stroma during tumor progression and in response to chemotherapy or radiotherapy. Experimental studies have demonstrated that COX-2 over expression promotes tumorigenesis, and that NSAIDs and COX-2 inhibitors suppress tumorigenesis and tumor progression. Clinical trials have shown that NSAIDs and COX-2 inhibitors suppress colon polyp formation and malignant progression in patients with familial adenomatous polyposis (FAP) syndrome. Recent advances in the understanding of the cellular and molecular mechanisms of the anti-cancer effects of NSAIDs and COX-2 inhibitors have demonstrated that these drugs target both tumor cells and the tumor vasculature. The therapeutic benefits of COX-2 inhibitors in the treatment of human cancer in combination with chemotherapy or radiotherapy are currently being tested in clinical trials. In this article we will review recent advances in the understanding of the anti-tumor mechanisms of these drugs and discuss their potential application in clinical oncology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Lapatinib is an effective anti-HER2 therapy in advanced breast cancer and docetaxel is one of the most active agents in breast cancer. Combining these agents in pre-treated patients with metastatic disease had previously proved challenging, so the primary objective of this study aimed to determine the maximum tolerated dose (MTD) in treatment-naive patients, by identifying acute dose-limiting toxicities (DLT) during cycle 1 in the first part of a phases 1-2 neoadjuvant European Organisation for Research and Treatment of Cancer (EORTC) trial. PATIENTS AND METHODS: Patients with large operable or locally-advanced HER2 positive breast cancer were treated with continuous lapatinib, and docetaxel every 21days for 4 cycles. Dose levels (DLs) were: 1000/75, 1250/75, 1000/85, 1250/85, 1000/100 and 1250/100 (mg/day)/(mg/m(2)). RESULTS: Twenty-one patients were included. Two DLTs occurred at dose level 5 (1000/100); one grade 4 neutropenia ⩾7days and one febrile neutropenia. A further 3 patients were therefore treated at the same dose with prophylactic granulocyte-colony stimulating factor (G-CSF), and 3 patients at dose level 6. No further DLTs were observed. CONCLUSIONS: Our recommended dose for phase II is lapatinib 1000mg/day and docetaxel 100mg/m(2) with G-CSF in HER2 positive non-metastatic breast cancer. The dose of lapatinib should have been 1250mg/day but we were mindful of the high rate of treatment discontinuation in GeparQuinto with lapatinib 1250mg/day combined with docetaxel. No grade 3-4 diarrhoea was observed. Pharmacodynamics analysis suggests that concomitant medications altering P-glycoprotein activity (in addition to lapatinib) can modify toxicity, including non-haematological toxicities. This needs verification in larger trials, where it may contribute to understanding the sources of variability in clinical toxicity and treatment discontinuation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A PRoliferation-Inducing TNF Ligand (APRIL) costimulates B-cell activation. When overexpressed in mice, APRIL induces B-cell neoplasia, reminiscent of human B-cell chronic lymphoid leukemia (B-CLL). We analyzed APRIL expression in situ in human non-Hodgkin lymphomas. APRIL up-regulation was only observed in high-grade B-cell lymphomas, diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma (BL). Up-regulation was seen in 46% and 20% of DLBCL and BL, respectively. In DLBCL, neutrophils, constitutively producing APRIL and infiltrating the tumor tissue, were the main cellular source of APRIL. Rare DLBCL cases showed a predominance of histiocytes or mesenchymal cells as APRIL source. APRIL secreted by neutrophils accumulated on tumor cells via proteoglycan binding. In addition to proteoglycans, DLBCL tumor cells expressed the APRIL signaling receptor, TACI and/or BCMA, indicating that these tumor cells are fully equipped to respond to APRIL. A retrospective clinical analysis revealed a significant correlation between high expression of APRIL in tumor lesions and decreased overall patient survival rate. Hence, APRIL produced by inflammatory cells infiltrating lymphoma lesions may increase tumor aggressiveness and affect disease outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidemiological studies indicate that the consumption of fructose-containing caloric sweeteners (FCCS: mainly sucrose and high-fructose corn syrup) is associated with obesity. The hypothesis that FCCS plays a causal role in the development of obesity however implies that they would impair energy balance to a larger extent than other nutrients, either by increasing food intake, or by decreasing energy expenditure. We therefore reviewed the literature comparing a) diet-induced thermogenesis (DIT) after ingestion of isocaloric FCCS vs glucose meals, and b) basal metabolic rate (BMR) or c) post-prandial energy expenditure after consuming a high FCCS diet for > 3 days vs basal,weight-maintenance low FCCS diet. Nine studies compared the effects of single isocaloric FCCS and glucose meals on DIT; of them, six studies reported that DIT was significantly higher with FCCS than with glucose, 2 reported a non-significant increase with FCCS, and one reported no difference. The higher DIT with fructose than glucose can be explained by the low energy efficiency associated with fructose metabolism. Five studies compared BMR after consumption of a high FCCS vs a low FCCS diet for > 3 days. Four studies reported no change after 4-7 day on a high FCCS diet, and only one study reported a 7% decrease after 12 week on a high FCCS diet. Three studies compared post-prandial EE after consumption of a high FCCS vs a low FCCS diet for > 3 days, and did not report any significant difference. One study compared 24-EE in subjects fed a weight-maintenance diet and hypercaloric diets with 50% excess energy as fructose, sucrose and glucose during 4 days: 24-EE was increased with all 3 hypercaloric diets, but there was no difference between fructose, sucrose and glucose. We conclude that fructose has lower energy efficiency than glucose. Based on available studies, there is presently no hint that dietary FCCS may decrease EE. Larger, well controlled studies are however needed to assess the longer term effects of FCCS on EE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies assessing skin irritation to chemicals have traditionally used laboratory animals; however, such methods are questionable regarding their relevance for humans. New in vitro methods have been validated, such as the reconstructed human epidermis (RHE) model (Episkin®, Epiderm®). The comparison (accuracy) with in vivo results such as the 4-h human patch test (HPT) is 76% at best (Epiderm®). There is a need to develop an in vitro method that better simulates the anatomo-pathological changes encountered in vivo. To develop an in vitro method to determine skin irritation using human viable skin through histopathology, and compare the results of 4 tested substances to the main in vitro methods and in vivo animal method (Draize test). Human skin removed during surgery was dermatomed and mounted on an in vitro flow-through diffusion cell system. Ten chemicals with known non-irritant (heptylbutyrate, hexylsalicylate, butylmethacrylate, isoproturon, bentazon, DEHP and methylisothiazolinone (MI)) and irritant properties (folpet, 1-bromohexane and methylchloroisothiazolinone (MCI/MI)), a negative control (sodiumchloride) and a positive control (sodiumlaurylsulphate) were applied. The skin was exposed at least for 4h. Histopathology was performed to investigate irritation signs (spongiosis, necrosis, vacuolization). We obtained 100% accuracy with the HPT model; 75% with the RHE models and 50% with the Draize test for 4 tested substances. The coefficients of variation (CV) between our three test batches were <0.1, showing good reproducibility. Furthermore, we reported objectively histopathological irritation signs (irritation scale): strong (folpet), significant (1-bromohexane), slight (MCI/MI at 750/250ppm) and none (isoproturon, bentazon, DEHP and MI). This new in vitro test method presented effective results for the tested chemicals. It should be further validated using a greater number of substances; and tested in different laboratories in order to suitably evaluate reproducibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intratumoural (i.t.) injection of radio-iododeoxyuridine (IdUrd), a thymidine (dThd) analogue, is envisaged for targeted Auger electron- or beta-radiation therapy of glioblastoma. Here, biodistribution of [(125)I]IdUrd was evaluated 5 hr after i.t. injection in subcutaneous human glioblastoma xenografts LN229 after different intravenous (i.v.) pretreatments with fluorodeoxyuridine (FdUrd). FdUrd is known to block de novo dThd synthesis, thus favouring DNA incorporation of radio-IdUrd. Results showed that pretreatment with 2 mg/kg FdUrd i.v. in 2 fractions 0.5 hr and 1 hr before injection of radio-IdUrd resulted in a mean tumour uptake of 19.8% of injected dose (% ID), representing 65.3% ID/g for tumours of approx. 0.35 g. Tumour uptake of radio-IdUrd in non-pretreated mice was only 4.1% ID. Very low uptake was observed in normal nondividing and dividing tissues with a maximum concentration of 2.9% ID/g measured in spleen. Pretreatment with a higher dose of FdUrd of 10 mg/kg prolonged the increased tumour uptake of radio-IdUrd up to 5 hr. A competition experiment was performed in FdUrd pretreated mice using i.t. co-injection of excess dThd that resulted in very low tumour retention of [(125)I]IdUrd. DNA isolation experiments showed that in the mean &gt;95% of tumour (125)I activity was incorporated in DNA. In conclusion, these results show that close to 20% ID of radio-IdUrd injected i.t. was incorporated in tumour DNA after i.v. pretreatment with clinically relevant doses of FdUrd and that this approach may be further exploited for diffusion and therapy studies with Auger electron- and/or beta-radiation-emitting radio-IdUrd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in kerato-epithelin are responsible for a group of hereditary cornea-specific deposition diseases, 5q31-linked corneal dystrophies. These conditions are characterized by progressive accumulation of protein deposits of different ultrastructure. Herein, we studied the corneas with mutations at kerato-epithelin residue Arg-124 resulting in amyloid (R124C), non-amyloid (R124L), and a mixed pattern of deposition (R124H). We found that aggregated kerato-epithelin comprised all types of pathological deposits. Each mutation was associated with characteristic changes of protein turnover in corneal tissue. Amyloidogenesis in R124C corneas was accompanied by the accumulation of N-terminal kerato-epithelin fragments, whereby species of 44 kDa were the major constituents of amyloid fibrils. R124H corneas with prevailing non-amyloid inclusions showed accumulation of a new 66-kDa species altogether with the full-size 68-kDa form. Finally, in R124L cornea with non amyloid deposits, we found only the accumulation of the 68-kDa form. Two-dimensional gels revealed mutation-specific changes in the processing of the full-size protein in all affected corneas. It appears that substitutions at the same residue (Arg-124) result in cornea-specific deposition of kerato-epithelin via distinct aggregation pathways each involving altered turnover of the protein in corneal tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The objective was to explore whether a satellite-based navigation system, global positioning system used in differential mode (DGPS), could accurately assess the speed of running in humans. METHODS: A subject was equipped with a portable GPS receptor coupled to a receiver for differential corrections, while running outdoors on a straight asphalt road at 27 different speeds. Actual speed (reference method) was assessed by chronometry. RESULTS: The accuracy of speed prediction had a standard deviation (SD) of 0.08 km x h(-1) for walking, 0.11 km x h(-1) for running, yielding a coefficient of variation (SD/mean) of 1.38% and 0.82%, respectively. There was a highly significant linear relationship between actual and DGPS speed assessment (r2 = 0.999) with little bias in the prediction equation, because the slope of the regression line was close to unity (0.997). CONCLUSION: the DGPS technique appears to be a valid and inconspicuous tool for "on line" monitoring of the speed of displacement of individuals located on any field on earth, for prolonged periods of time and unlimited distance, but only in specific environmental conditions ("open sky"). Furthermore, the accuracy of speed assessment using the differential GPS mode was improved by a factor of 10 as compared to non-differential GPS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé La plupart des cellules issues du sang ont une durée de vie limitée. Dans les cellules somatiques humaines, y incluant les lymphocytes T, la taille des télomères diminue progressivement à chaque division cellulaire, pouvant aboutir à des instabilités chromosomiques. L'expression ectopique du gène de la transcriptase réverse de la télomérase (hTERT) dans les cellules restaure l'activité de la télomérase, et permet un rallongement de leur vie réplicative. Malgré l'absence de signes caractéristiques de transformation, nous ne savons pas encore si les cellules somatiques qui surexpriment hTERT sont physiologiquement indiscernables des cellules normales. Certaines études récentes proposent que la télomérase joue plusieurs rôles additionnels dans d'autres phénomènes biologiques tels que la réparation de l'ADN, la survie et la croissance des cellules. Dans notre étude, nous avons utilisé des clones issus de lymphocytes T cytotoxiques surexprimant la télomérase afin d'étudier les mécanismes moléculaires qui règlent leur prolifération et leur sénescence. Nous avons montré que les «jeunes » cellules T exprimant ou non hTERT révèlent des taux de croissance identiques suite à des réponses de stimulation induites par des mitogènes. De plus, aucun changement global dans leur expression des gènes n'a pu être mis en évidence. Curieusement, nous avons observé des réponses réduites dans la prolifération des cellules transduites avec la télomérase qui présentaient une élongation des télomères et une durée de vie prolongée. Ces cellules, malgré le maintien d'un niveau élevé de l'expression de gènes impliqués dans la progression du cycle cellulaire, ont également montré une expression accrue de plusieurs gènes trouvés en commun avec nos lymphocytes T vieillissants n'exprimant pas de télomérase. En particulier, les cellules ayant une durée de vie prolongée grâce à l'expression de la télomérase accumulaient également certains inhibiteurs du cycle cellulaire tels que p16Ink4a et p21Cip1, associés à l'arrêt de la croissance cellulaire. En résumé, nos résultats indiquent la présence fonctionnelle de mécanismes alternatifs pouvant contrôler la croissance réplicative de ces cellules; ils sont donc encourageants dans l'optique d'une utilisation à moindre risque de lymphocytes T «immortalisés » à des fins thérapeutiques pour traiter les tumeurs malignes ou les infections. Summary Most mature blood cells have a finite life span. In human somatic cells, including T lymphocytes, telomeres progressively shorten with each cell division eventually leading to chromosomal instability. Ectopic expression of the human telomerase reverse transcriptase (hTERT) gene in cells restores telomerase activity and results in the extension of their replicative life span. Despite lack of transformation characteristics, it is yet unknown whether somatic cells that over-express telomerase are biologically and physiologically indistinguishable from normal cells. Recent data suggest that telomerase might mediate additional functions in DNA repair, cell survival and cell growth. Using CD8+ T lymphocyte clones over-expressing telomerase we investigated the molecular mechanisms that regulate T cell proliferation and senescence. Here we show that early-passage T cell clones transduced or not with hTERT displayed identical growth rates upon mitogenic stimulation and no marked global changes in gene expression. Surprisingly, reduced proliferative responses were observed in hTERT-transduced cells with elongated telomeres and extended life span. These cells, despite maintaining high expression level of genes involved in cell cycle division and progression, also showed increased expression of several genes associated with normal aging T lymphocytes. In particular, late passage T cells over-expressing telomerase accumulated the cyclin-dependent inhibitors p16INK4a and p21CIP1 that have largely been associated with in vitro growth arrest. Whether tumor-reactive CD8+ T cells that ectopically express telomerase could now be used for adoptive transfer therapy in cancer patients remains unclear at this point. Nevertheless, our results regarding the safe and effective use of hTERT-transduced lymphocytes are encouraging, since they indicate that alternative growth arrest mechanisms such as p 16 and p21 are still functional in these cells and regulate to some extend their growth potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mouse models are important tools to decipher the molecular mechanisms of mammary carcinogenesis and to mimic the respective human disease. Despite sharing common phenotypic and genetic features, the proper translation of murine models to human breast cancer remains a challenging task. In a previous study we showed that in the SV40 transgenic WAP-T mice an active Met-pathway and epithelial-mesenchymal characteristics distinguish low- and high-grade mammary carcinoma. To assign these murine tumors to corresponding human tumors we here incorporated the analysis of expression of transcription factor (TF) coding genes and show that thereby a more accurate interspecies translation can be achieved. We describe a novel cross-species translation procedure and demonstrate that expression of unsupervised selected TFs, such as ELF5, HOXA5 and TFCP2L1, can clearly distinguish between the human molecular breast cancer subtypes-or as, for example, expression of TFAP2B between yet unclassified subgroups. By integrating different levels of information like histology, gene set enrichment, expression of differentiation markers and TFs we conclude that tumors in WAP-T mice exhibit similarities to both, human basal-like and non-basal-like subtypes. We furthermore suggest that the low- and high-grade WAP-T tumor phenotypes might arise from distinct cells of tumor origin. Our results underscore the importance of TFs as common cross-species denominators in the regulatory networks underlying mammary carcinogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In bacteria, genetic recombination is catalysed by RecA protein, the product of the recA gene. A human gene that shares homology with Escherichia coli recA (and its yeast homologue RAD51) has been cloned from a testis cDNA library, and its 37 kDa product (hRad51) purified to homogeneity. The human Rad51 protein binds to single- and double-stranded DNA and exhibits DNA-dependent ATPase activity. Using a topological assay, we demonstrate that hRad51 underwinds duplex DNA, in a reaction dependent upon the presence of ATP or its non-hydrolysable analogue ATP gamma S. Complexes formed with single- and double-stranded DNA have been observed by electron microscopy following negative staining. With nicked duplex DNA, hRad51 forms helical nucleoprotein filaments which exhibit the striated appearance characteristic of RecA or yeast Rad51 filaments. Contour length measurements indicate that the DNA is underwound and extended within the nucleoprotein complex. In contrast to yeast Rad51 protein, human Rad51 forms filaments with single-stranded DNA in the presence of ATP/ATP gamma S. These resemble the inactive form of the RecA filament which is observed in the absence of a nucleotide cofactor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adequate in-vitro training in valved stents deployment as well as testing of the latter devices requires compliant real-size models of the human aortic root. The casting methods utilized up to now are multi-step, time consuming and complicated. We pursued a goal of building a flexible 3D model in a single-step procedure. We created a precise 3D CAD model of a human aortic root using previously published anatomical and geometrical data and printed it using a novel rapid prototyping system developed by the Fab@Home project. As a material for 3D fabrication we used common house-hold silicone and afterwards dip-coated several models with dispersion silicone one or two times. To assess the production precision we compared the size of the final product with the CAD model. Compliance of the models was measured and compared with native porcine aortic root. Total fabrication time was 3 h and 20 min. Dip-coating one or two times with dispersion silicone if applied took one or two extra days, respectively. The error in dimensions of non-coated aortic root model compared to the CAD design was <3.0% along X, Y-axes and 4.1% along Z-axis. Compliance of a non-coated model as judged by the changes of radius values in the radial direction by 16.39% is significantly different (P<0.001) from native aortic tissue--23.54% at the pressure of 80-100 mmHg. Rapid prototyping of compliant, life-size anatomical models with the Fab@Home 3D printer is feasible--it is very quick compared to previous casting methods.