167 resultados para Weyden, Rogier van der, 1399 or 1400-1464.
Resumo:
A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SASbur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, deltaGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC5o without reparametrization.
Resumo:
Sphingomonas paucimobilis B90A contains two variants, LinA1 and LinA2, of a dehydrochlorinase that catalyzes the first and second steps in the metabolism of hexachlorocyclohexanes (R. Kumari, S. Subudhi, M. Suar, G. Dhingra, V. Raina, C. Dogra, S. Lal, J. R. van der Meer, C. Holliger, and R. Lal, Appl. Environ. Microbiol. 68:6021-6028, 2002). On the amino acid level, LinA1 and LinA2 were 88% identical to each other, and LinA2 was 100% identical to LinA of S. paucimobilis UT26. Incubation of chiral alpha-hexachlorocyclohexane (alpha-HCH) with Escherichia coli BL21 expressing functional LinA1 and LinA2 S-glutathione transferase fusion proteins showed that LinA1 preferentially converted the (+) enantiomer, whereas LinA2 preferred the (-) enantiomer. Concurrent formation and subsequent dissipation of beta-pentachlorocyclohexene enantiomers was also observed in these experiments, indicating that there was enantioselective formation and/or dissipation of these enantiomers. LinA1 preferentially formed (3S,4S,5R,6R)-1,3,4,5,6-pentachlorocyclohexene, and LinA2 preferentially formed (3R,4R,5S,6S)-1,3,4,5,6-pentachlorocyclohexene. Because enantioselectivity was not observed in incubations with whole cells of S. paucimobilis B90A, we concluded that LinA1 and LinA2 are equally active in this organism. The enantioselective transformation of chiral alpha-HCH by LinA1 and LinA2 provides the first evidence of the molecular basis for the changed enantiomer composition of alpha-HCH in many natural environments. Enantioselective degradation may be one of the key processes determining enantiomer composition, especially when strains that contain only one of the linA genes, such as S. paucimobilis UT26, prevail.
Resumo:
Astonishing as it may seem, one organism's waste is often ideal food for another. Many waste products generated by human activities are routinely degraded by microorganisms under controlled conditions during waste-water treatment. Toxic pollutants resulting from inadvertent releases, such as oil spills, are also consumed by bacteria, the simplest organisms on Earth. Biodegradation of toxic or particularly persistent compounds, however, remains problematic. What has escaped the attention of many is that bacteria exposed to pollutants can adapt to them by mutating or acquiring degradative genes. These bacteria can proliferate in the environment as a result of the selection pressures created by pollutants. The positive outcome of selection pressure is that harmful compounds may eventually be broken down completely through biodegradation. The downside is that biodegradation may require extremely long periods of time. Although the adaptation process has been shown to be reproducible, it remains very difficult to predict.
Resumo:
Each year, approximately five million people die worldwide from putatively vaccine-preventable mucosally transmitted diseases. With respect to mass vaccination campaigns, one strategy to cope with this formidable challenge is aerosol vaccine delivery, which offers potential safety, logistical, and cost-saving advantages over traditional vaccination routes. Additionally, aerosol vaccination may elicit pivotal mucosal immune responses that could contain or eliminate mucosally transmitted pathogens in a preventative or therapeutic vaccine context. In this current preclinical non-human primate investigation, we demonstrate the feasibility of aerosol vaccination with the recombinant poxvirus-based vaccine vectors NYVAC and MVA. Real-time in vivo scintigraphy experiments with radiolabeled, aerosol-administered NYVAC-C (Clade C, HIV-1 vaccine) and MVA-HPV vaccines revealed consistent mucosal delivery to the respiratory tract. Furthermore, aerosol delivery of the vaccines was safe, inducing no vaccine-associated pathology, in particular in the brain and lungs, and was immunogenic. Administration of a DNA-C/NYVAC-C prime/boost regime resulted in both systemic and anal-genital HIV-specific immune responses that were still detectable 5 months after immunization. Thus, aerosol vaccination with NYVAC and MVA vectored vaccines constitutes a tool for large-scale vaccine efforts against mucosally transmitted pathogens.
Resumo:
Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N ≤ 71,225 European ancestry, N ≤ 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N = 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10(-24)), CYP1A2 (P = 1 × 10(-23)), FGF5 (P = 1 × 10(-21)), SH2B3 (P = 3 × 10(-18)), MTHFR (P = 2 × 10(-13)), c10orf107 (P = 1 × 10(-9)), ZNF652 (P = 5 × 10(-9)) and PLCD3 (P = 1 × 10(-8)) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
Resumo:
Since the development of the first whole-cell living biosensor or bioreporter about 15 years ago, construction and testing of new genetically modified microorganisms for environmental sensing and reporting has proceeded at an ever increasing rate. One and a half decades appear as a reasonable time span for a new technology to reach the maturity needed for application and commercial success. It seems, however, that the research into cellular biosensors is still mostly in a proof-of-principle or demonstration phase and not close to extensive or commercial use outside of academia. In this review, we consider the motivations for bioreporter developments and discuss the suitability of extant bioreporters for the proposed applications to stimulate complementary research and to help researchers to develop realistic objectives. This includes the identification of some popular misconceptions about the qualities and shortcomings of bioreporters.
Resumo:
There is evidence across several species for genetic control of phenotypic variation of complex traits, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using ∼170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of ∼0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI, possibly mediated by DNA methylation. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.
Resumo:
Cross-hole radar tomography is a useful tool for mapping shallow subsurface electrical properties viz. dielectric permittivity and electrical conductivity. Common practice is to invert cross-hole radar data with ray-based tomographic algorithms using first arrival traveltimes and first cycle amplitudes. However, the resolution of conventional standard ray-based inversion schemes for cross-hole ground-penetrating radar (GPR) is limited because only a fraction of the information contained in the radar data is used. The resolution can be improved significantly by using a full-waveform inversion that considers the entire waveform, or significant parts thereof. A recently developed 2D time-domain vectorial full-waveform crosshole radar inversion code has been modified in the present study by allowing optimized acquisition setups that reduce the acquisition time and computational costs significantly. This is achieved by minimizing the number of transmitter points and maximizing the number of receiver positions. The improved algorithm was employed to invert cross-hole GPR data acquired within a gravel aquifer (4-10 m depth) in the Thur valley, Switzerland. The simulated traces of the final model obtained by the full-waveform inversion fit the observed traces very well in the lower part of the section and reasonably well in the upper part of the section. Compared to the ray-based inversion, the results from the full-waveform inversion show significantly higher resolution images. At either side, 2.5 m distance away from the cross-hole plane, borehole logs were acquired. There is a good correspondence between the conductivity tomograms and the natural gamma logs at the boundary of the gravel layer and the underlying lacustrine clay deposits. Using existing petrophysical models, the inversion results and neutron-neutron logs are converted to porosity. Without any additional calibration, the values obtained for the converted neutron-neutron logs and permittivity results are very close and similar vertical variations can be observed. The full-waveform inversion provides in both cases additional information about the subsurface. Due to the presence of the water table and associated refracted/reflected waves, the upper traces are not well fitted and the upper 2 m in the permittivity and conductivity tomograms are not reliably reconstructed because the unsaturated zone is not incorporated into the inversion domain.
Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.
Resumo:
Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function.
Resumo:
BACKGROUND: Elderly patients are emerging as a population at high risk for infective endocarditis (IE). However, adequately sized prospective studies on the features of IE in elderly patients are lacking. METHODS: In this multinational, prospective, observational cohort study within the International Collaboration on Endocarditis, 2759 consecutive patients were enrolled from June 15, 2000, to December 1, 2005; 1056 patients with IE 65 years or older were compared with 1703 patients younger than 65 years. Risk factors, predisposing conditions, origin, clinical features, course, and outcome of IE were comprehensively analyzed. RESULTS: Elderly patients reported more frequently a hospitalization or an invasive procedure before IE onset. Diabetes mellitus and genitourinary and gastrointestinal cancer were the major predisposing conditions. Blood culture yield was higher among elderly patients with IE. The leading causative organism was Staphylococcus aureus, with a higher rate of methicillin resistance. Streptococcus bovis and enterococci were also significantly more prevalent. The clinical presentation of elderly patients with IE was remarkable for lower rates of embolism, immune-mediated phenomena, or septic complications. At both echocardiography and surgery, fewer vegetations and more abscesses were found, and the gain in the diagnostic yield of transesophageal echocardiography was significantly larger. Significantly fewer elderly patients underwent cardiac surgery (38.9% vs 53.5%; P < .001). Elderly patients with IE showed a higher rate of in-hospital death (24.9% vs 12.8%; P < .001), and age older than 65 years was an independent predictor of mortality. CONCLUSIONS: In this large prospective study, increasing age emerges as a major determinant of the clinical characteristics of IE. Lower rates of surgical treatment and high mortality are the most prominent features of elderly patients with IE. Efforts should be made to prevent health care-associated acquisition and improve outcomes in this major subgroup of patients with IE.
Resumo:
Bone marrow hematopoietic stem cells (HSCs) are crucial to maintain lifelong production of all blood cells. Although HSCs divide infrequently, it is thought that the entire HSC pool turns over every few weeks, suggesting that HSCs regularly enter and exit cell cycle. Here, we combine flow cytometry with label-retaining assays (BrdU and histone H2B-GFP) to identify a population of dormant mouse HSCs (d-HSCs) within the lin(-)Sca1+cKit+CD150+CD48(-)CD34(-) population. Computational modeling suggests that d-HSCs divide about every 145 days, or five times per lifetime. d-HSCs harbor the vast majority of multilineage long-term self-renewal activity. While they form a silent reservoir of the most potent HSCs during homeostasis, they are efficiently activated to self-renew in response to bone marrow injury or G-CSF stimulation. After re-establishment of homeostasis, activated HSCs return to dormancy, suggesting that HSCs are not stochastically entering the cell cycle but reversibly switch from dormancy to self-renewal under conditions of hematopoietic stress.
Resumo:
PURPOSE OF THE STUDY: This prospective study reports our preliminary results with local anaesthesia (LA) for carotid endarterectomy (CEA). MATERIAL AND METHODS: Twenty CEA in nineteen patients were performed using a three-stage local infiltration technique. CEA were performed through a short Duplex-assisted skin incision (median length: 55 mm) using a retro-jugular approach and polyurethane patch closure (median length: 35 mm). RESULTS: There were 13 men and 6 women with a mean age of 71.2 years. The indications of CEA were asymptomatic lesions in 11 cases, stroke in 7 cases and transient ischaemic attack in 2 cases. The median degree of internal carotid artery stenosis was 90%. One patient (5%) required an intraluminal shunt. There were no peri-operative deaths, stroke or conversion to general anaesthesia (GA). The median length of stay was 3 days. CONCLUSIONS: LA is a good alternative to GA. It can be used after a feasibility study and a short teaching procedure. In our centre, it is a safe and effective procedure associated with low morbidity, high acceptance by patients and a short hospital stay.
Resumo:
Chronic kidney disease (CKD), impairment of kidney function, is a serious public health problem, and the assessment of genetic factors influencing kidney function has substantial clinical relevance. Here, we report a meta-analysis of genome-wide association studies for kidney function-related traits, including 71,149 east Asian individuals from 18 studies in 11 population-, hospital- or family-based cohorts, conducted as part of the Asian Genetic Epidemiology Network (AGEN). Our meta-analysis identified 17 loci newly associated with kidney function-related traits, including the concentrations of blood urea nitrogen, uric acid and serum creatinine and estimated glomerular filtration rate based on serum creatinine levels (eGFRcrea) (P < 5.0 × 10(-8)). We further examined these loci with in silico replication in individuals of European ancestry from the KidneyGen, CKDGen and GUGC consortia, including a combined total of ∼110,347 individuals. We identify pleiotropic associations among these loci with kidney function-related traits and risk of CKD. These findings provide new insights into the genetics of kidney function.
Resumo:
Therapeutic drug monitoring (TDM) and pharmacogenetic tests play a major role in minimising adverse drug reactions and enhancing optimal therapeutic response. The response to medication varies greatly between individuals, according to genetic constitution, age, sex, co-morbidities, environmental factors including diet and lifestyle (e.g. smoking and alcohol intake), and drug-related factors such as pharmacokinetic or pharmacodynamic drug-drug interactions. Most adverse drug reactions are type A reactions, i.e. plasma-level dependent, and represent one of the major causes of hospitalisation, in some cases leading to death. However, they may be avoidable to some extent if pharmacokinetic and pharmacogenetic factors are taken into consideration. This article provides a review of the literature and describes how to apply and interpret TDM and certain pharmacogenetic tests and is illustrated by case reports. An algorithm on the use of TDM and pharmacogenetic tests to help characterise adverse drug reactions is also presented. Although, in the scientific community, differences in drug response are increasingly recognised, there is an urgent need to translate this knowledge into clinical recommendations. Databases on drug-drug interactions and the impact of pharmacogenetic polymorphisms and adverse drug reaction information systems will be helpful to guide clinicians in individualised treatment choices.
Resumo:
Bioassays with bioreporter bacteria are usually calibrated with analyte solutions of known concentrations that are analysed along with the samples of interest. This is done as bioreporter output (the intensity of light, fluorescence or colour) does not only depend on the target concentration, but also on the incubation time and physiological activity of the cells in the assay. Comparing the bioreporter output with standardized colour tables in the field seems rather difficult and error-prone. A new approach to control assay variations and improve application ease could be an internal calibration based on the use of multiple bioreporter cell lines with drastically different reporter protein outputs at a given analyte concentration. To test this concept, different Escherichia coli-based bioreporter strains expressing either cytochrome c peroxidase (CCP, or CCP mutants) or β-galactosidase upon induction with arsenite were constructed. The reporter strains differed either in the catalytic activity of the reporter protein (for CCP) or in the rates of reporter protein synthesis (for β-galactosidase), which, indeed, resulted in output signals with different intensities at the same arsenite concentration. Hence, it was possible to use combinations of these cell lines to define arsenite concentration ranges at which none, one or more cell lines gave qualitative (yes/no) visible signals that were relatively independent of incubation time or bioreporter activity. The discriminated concentration ranges would fit very well with the current permissive (e.g. World Health Organization) levels of arsenite in drinking water (10 µg l−1).