117 resultados para Red edge emission
Resumo:
We present a method to automatically segment red blood cells (RBCs) visualized by digital holographic microscopy (DHM), which is based on the marker-controlled watershed algorithm. Quantitative phase images of RBCs can be obtained by using off-axis DHM along to provide some important information about each RBC, including size, shape, volume, hemoglobin content, etc. The most important process of segmentation based on marker-controlled watershed is to perform an accurate localization of internal and external markers. Here, we first obtain the binary image via Otsu algorithm. Then, we apply morphological operations to the binary image to get the internal markers. We then apply the distance transform algorithm combined with the watershed algorithm to generate external markers based on internal markers. Finally, combining the internal and external markers, we modify the original gradient image and apply the watershed algorithm. By appropriately identifying the internal and external markers, the problems of oversegmentation and undersegmentation are avoided. Furthermore, the internal and external parts of the RBCs phase image can also be segmented by using the marker-controlled watershed combined with our method, which can identify the internal and external markers appropriately. Our experimental results show that the proposed method achieves good performance in terms of segmenting RBCs and could thus be helpful when combined with an automated classification of RBCs.
Resumo:
NK cell self-tolerance is maintained by inhibitory receptors specific for MHC class I molecules. Inhibitory NK receptors are also expressed on memory CD8 T cells but their biological relevance on T cells is unclear. In this study, we describe the expression of the Ly49A receptor on a subset of autoreactive T cells which persist in mice double-transgenic for the lymphocytic choriomeningitis virus-derived peptide gp33 and a TCRalphabeta specific for the gp33. No Ly49A-expressing cells are found in TCRalphabeta single-transgenic mice, indicating that the presence of the autoantigen is required for Ly49A induction. Direct evidence for an Ag-specific initiation of Ly49A expression has been obtained in vitro after stimulation of autoreactive TCRalphabeta T cells with the cognate self-Ag. This expression of Ly49A substantially reduces Ag-specific activation of autoreactive T cells. These findings thus suggest that autoantigen-specific induction of inhibitory NK cell receptors on T cells may contribute to peripheral self-tolerance.
Resumo:
Adjuvants are vaccine additives that stimulate the immune system without having any specific antigenic effect of itself. In this study we show that alum adjuvant induces the release of IL-1beta from macrophages and dendritic cells and that this is abrogated in cells lacking various NALP3 inflammasome components. The NALP3 inflammasome is also required in vivo for the innate immune response to OVA in alum. The early production of IL-1beta and the influx of inflammatory cells into the peritoneal cavity is strongly reduced in NALP3-deficient mice. The activation of adaptive cellular immunity to OVA-alum is initiated by monocytic dendritic cell precursors that induce the expansion of Ag-specific T cells in a NALP3-dependent way. We propose that, in addition to TLR stimulators, agonists of the NALP3 inflammasome should also be considered as vaccine adjuvants.
Resumo:
In this study, we evaluated the repeatability of pupil responses to colored light stimuli in healthy subjects using a prototype chromatic pupillometer. One eye of 10 healthy subjects was tested twice in the same day using monochromatic light exposure at two selected wavelengths (660 and 470 nm, intensity 300 cd/m(2)) presented continuously for 20 s. Pupil responses were recorded in real-time before, during, and after light exposure. Maximal contraction amplitude and sustained contraction amplitude were calculated. In addition, we quantified the summed pupil response during continuous light stimulation as the total area between a reference line representing baseline pupil size and the line representing actual pupil size over 20 s (area under the curve). There was no significant difference in the repeated measure compared to the first test for any of the pupil response parameters. In conclusion, we have developed a novel prototype of color pupillometer which demonstrates good repeatability in evoking and recording the pupillary response to a bright blue and red light stimulus.
Resumo:
Ruin occurs the first time when the surplus of a company or an institution is negative. In the Omega model, it is assumed that even with a negative surplus, the company can do business as usual until bankruptcy occurs. The probability of bankruptcy at a point of time only depends on the value of the negative surplus at that time. Under the assumption of Brownian motion for the surplus, the expected discounted value of a penalty at bankruptcy is determined, and hence the probability of bankruptcy. There is an intrinsic relation between the probability of no bankruptcy and an exposure random variable. In special cases, the distribution of the total time the Brownian motion spends below zero is found, and the Laplace transform of the integral of the negative part of the Brownian motion is expressed in terms of the Airy function of the first kind.
Resumo:
Ectopic ACTH Cushing's syndrome (EAS) is often caused by neuroendocrine tumors (NETs) of lungs, pancreas, thymus, and other less frequent locations. Localizing the source of ACTH can be challenging. A 64-year-old man presented with rapidly progressing fatigue, muscular weakness, and dyspnea. He was in poor condition and showed facial redness, proximal amyotrophy, and bruises. Laboratory disclosed hypokalemia, metabolic alkalosis, and markedly elevated ACTH and cortisol levels. Pituitary was normal on magnetic resonance imaging (MRI), and bilateral inferior petrosal sinus blood sampling with corticotropin-releasing hormone stimulation showed no significant central-to-periphery gradient of ACTH. Head and neck, thoracic and abdominal computerized tomography (CT), MRI, somatostatin receptor scintigraphy (SSRS), and (18)F-deoxyglucose-positron emission tomography (FDG-PET) failed to identify the primary tumor. (18)F-dihydroxyphenylalanine (F-DOPA)-PET/CT unveiled a 20-mm nodule in the jejunum and a metastatic lymph node. Segmental jejunum resection showed two adjacent NETs, measuring 2.0 and 0.5 cm with a peritoneal metastasis. The largest tumor expressed ACTH in 30% of cells. Following surgery, after a transient adrenal insufficiency, ACTH and cortisol levels returned to normal values and remain normal over a follow-up of 26 months. Small mid-gut NETs are difficult to localize on CT or MRI, and require metabolic imaging. Owing to low mitotic activity, NETs are generally poor candidates for FDG-PET, whereas SSRS shows poor sensitivity in EAS due to intrinsically low tumor concentration of type-2 somatostatin receptors (SST2) or to receptor down regulation by excess cortisol. However, F-DOPA-PET, which is related to amine precursor uptake by NETs, has been reported to have high positive predictive value for occult EAS despite low sensitivity, and constitutes a useful alternative to more conventional methods of tumor localization. LEARNING POINTS: Uncontrolled high cortisol levels in EAS can be lethal if untreated.Surgical excision is the keystone of NETs treatment, thus tumor localization is crucial.Most cases of EAS are caused by NETs, which are located mainly in the lungs. However, small gut NETs are elusive to conventional imaging and require metabolic imaging for detection.FDG-PET, based on tumor high metabolic rate, may not detect NETs that have low mitotic activity. SSRS may also fail, due to absent or low concentration of SST2, which may be down regulated by excess cortisol.F-DOPA-PET, based on amine-precursor uptake, can be a useful method to localize the occult source of ACTH in EAS when other methods have failed.
Resumo:
The age of erythrocyte concentrates (EC) in transfusion medicine and the adverse outcomes when transfusing long-term-stored EC are highly controversial issues. Whereas the definition of a short-term-stored EC or a long-term-stored EC is unclear in clinical trials, data based on in vitro storage assays can help defining a limit in addition of the expiration date. The present review merges together these data in order to highlight an EC age cut-off and points out potential misleading consideration. The analysis of in vitro data highlights the presence of reversible and irreversible storage lesions and demonstrates that red blood cells (RBC) exhibit two limits during storage: one around 2 weeks and another one around 4 weeks of storage. Of particular importance, the first lesions to appear, i.e. the reversible ones, are per se reversible once transfused, whereas the irreversible lesions are not. In clinical trials, the EC age cut-off for short-term storage is in general fewer than 14 days (11 ± 4 days) and more disperse for long-term-stored EC (17 ± 13 days), regardless the clinical outcomes. Taking together, EC age cut-off in clinical trials does not totally fall into line of in vitro aging data, whereas it is the key criteria in clinical studies. Long-term-stored EC considered in clinical trials are not probably old enough to answer the question: "Does transfusion of long-term-stored EC (older than 4 weeks) result in worse clinical outcomes?" Depending on ethical concerns and clinical practices, older EC than currently assayed in clinical trials should have to be considered. These two worlds trying to understand the aging of erythrocytes and the impact on patients do not seem to speak the same language.
The 'Red Flag Instrument' for Early Detection of Crohn's Disease: Is it ready for Clinical Practice?
Resumo:
Fluorescent proteins that can switch between distinct colors have contributed significantly to modern biomedical imaging technologies and molecular cell biology. Here we report the identification and biochemical analysis of a green-shifted red fluorescent protein variant GmKate, produced by the introduction of two mutations into mKate. Although the mutations decrease the overall brightness of the protein, GmKate is subject to pH-dependent, reversible green-to-red color conversion. At physiological pH, GmKate absorbs blue light (445 nm) and emits green fluorescence (525 nm). At pH above 9.0, GmKate absorbs 598 nm light and emits 646 nm, far-red fluorescence, similar to its sequence homolog mNeptune. Based on optical spectra and crystal structures of GmKate in its green and red states, the reversible color transition is attributed to the different protonation states of the cis-chromophore, an interpretation that was confirmed by quantum chemical calculations. Crystal structures reveal potential hydrogen bond networks around the chromophore that may facilitate the protonation switch, and indicate a molecular basis for the unusual bathochromic shift observed at high pH. This study provides mechanistic insights into the color tuning of mKate variants, which may aid the development of green-to-red color-convertible fluorescent sensors, and suggests GmKate as a prototype of genetically encoded pH sensors for biological studies.
Resumo:
Background: Microparticles are small phospholipid vesicles of <1 lm shed in blood flow by various cell types including red blood cells. Erythrocyte-derived microparticles (EMPs) accumulate in erythrocyte concentrates (ECs) during their storage time. EMPs are considered as part of storage lesion and as their exact role is not elucidated, they could be involved in these clinical outcomes. Aims: The aim of this study is to evaluate the impact and implication of EMPs isolate from ECs on coagulation. Methods: EMPs were first isolated from erythrocyte concentrates by centrifugation and counted by flow cytometry. Using a calibrated automated thrombogram, EMPs were then added to different type of plasmas in order to evaluate the potential of thrombin generation. Results: We demonstrate that EMPs isolated from ECs are capable to accelerate and amplify thrombin generation in presence of a low exogenous tissue factor concentration, thanks to their negatively charged membrane necessary for the assembly of coagulation complexes. Interestingly, in the absence of exogenous tissue factor, EMPs are also able to trigger thrombin generation. In addition, thrombin generation induced by EMPs is not affected by the presence of anti-TF antibodies. Finally, thrombin generation induced by EMPs is not affected by using plasma samples deficient in factor VII, XI or XII. However, thrombin generation is reduced in plasma deficient in factor VIII or IX and is completely abolished in plasma deficient in factor X, V or II. No thrombin generation was observed in plasma samples without EMPs. Summary/conclusion: Several studies have shown a link between storage time of blood products and post transfusion complications. We provide evidence that EMPs accumulated during storage of erythrocyte concentrates were not only able to accelerate and support thrombin generation in plasma in presence of a low exogenous tissue-factor concentration, but also to trigger thrombin generation in absence of exogenous TF. The impact of those transfused EMs is unknown on recipients, nevertheless it could be hypothesized that under certain circumstances, transfused EMPs could be involved in thrombin generation and could be linked to adverse clinical outcome. Further work is needed to determine whether procoagulant EMPs transfused with erythrocyte concentrate may account for some of the complications occurring after red blood cell transfusion, and more particularly after transfusion of ''older''stored blood, rich in EMPs.