129 resultados para Optimal code
Resumo:
Even though patients who develop ischemic stroke despite taking antiplatelet drugs represent a considerable proportion of stroke hospital admissions, there is a paucity of data from investigational studies regarding the most suitable therapeutic intervention. There have been no clinical trials to test whether increasing the dose or switching antiplatelet agents reduces the risk for subsequent events. Certain issues have to be considered in patients managed for a first or recurrent stroke while receiving antiplatelet agents. Therapeutic failure may be due to either poor adherence to treatment, associated co-morbid conditions and diminished antiplatelet effects (resistance to treatment). A diagnostic work up is warranted to identify the etiology and underlying mechanism of stroke, thereby guiding further management. Risk factors (including hypertension, dyslipidemia and diabetes) should be treated according to current guidelines. Aspirin or aspirin plus clopidogrel may be used in the acute and early phase of ischemic stroke, whereas in the long-term, antiplatelet treatment should be continued with aspirin, aspirin/extended release dipyridamole or clopidogrel monotherapy taking into account tolerance, safety, adherence and cost issues. Secondary measures to educate patients about stroke, the importance of adherence to medication, behavioral modification relating to tobacco use, physical activity, alcohol consumption and diet to control excess weight should also be implemented.
Resumo:
An attractive treatment of cancer consists in inducing tumor-eradicating CD8(+) CTL specific for tumor-associated Ags, such as NY-ESO-1 (ESO), a strongly immunogenic cancer germ line gene-encoded tumor-associated Ag, widely expressed on diverse tumors. To establish optimal priming of ESO-specific CTL and to define critical vaccine variables and mechanisms, we used HLA-A2/DR1 H-2(-/-) transgenic mice and sequential immunization with immunodominant DR1- and A2-restricted ESO peptides. Immunization of mice first with the DR1-restricted ESO(123-137) peptide and subsequently with mature dendritic cells (DCs) presenting this and the A2-restriced ESO(157-165) epitope generated abundant, circulating, high-avidity primary and memory CD8(+) T cells that efficiently killed A2/ESO(157-165)(+) tumor cells. This prime boost regimen was superior to other vaccine regimes and required strong Th1 cell responses, copresentation of MHC class I and MHC class II peptides by the same DC, and resulted in upregulation of sphingosine 1-phosphate receptor 1, and thus egress of freshly primed CD8(+) T cells from the draining lymph nodes into circulation. This well-defined system allowed detailed mechanistic analysis, which revealed that 1) the Th1 cytokines IFN-gamma and IL-2 played key roles in CTL priming, namely by upregulating on naive CD8(+) T cells the chemokine receptor CCR5; 2) the inflammatory chemokines CCL4 (MIP-1beta) and CCL3 (MIP-1alpha) chemoattracted primed CD4(+) T cells to mature DCs and activated, naive CD8(+) T cells to DC-CD4 conjugates, respectively; and 3) blockade of these chemokines or their common receptor CCR5 ablated priming of CD8(+) T cells and upregulation of sphingosine 1-phosphate receptor 1. These findings provide new opportunities for improving T cell cancer vaccines.
Resumo:
Enhanced Recovery After Surgery (ERAS) is a multimodal, standardized and evidence-based perioperative care pathway. With ERAS, postoperative complications are significantly lowered, and, as a secondary effect, length of hospital stay and health cost are reduced. The patient recovers better and faster allowing to reduce in addition the workload of healthcare providers. Despite the hospital discharge occurs sooner, there is no increased charge of the outpatient care. ERAS can be safely applied to any patient by a tailored approach. The general practitioner plays an essential role in ERAS by assuring the continuity of the information and the follow-up of the patient.
Resumo:
Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.
Resumo:
Motivated by the Chinese experience, we analyze a semi-open economy where the central bank has access to international capital markets, but the private sector has not. This enables the central bank to choose an interest rate different from the international rate. We examine the optimal policy of the central bank by modelling it as a Ramsey planner who can choose the level of domestic public debt and of international reserves. The central bank can improve savings opportunities of credit-constrained consumers modelled as in Woodford (1990). We find that in a steady state it is optimal for the central bank to replicate the open economy, i.e., to issue debt financed by the accumulation of reserves so that the domestic interest rate equals the foreign rate. When the economy is in transition, however, a rapidly growing economy has a higher welfare without capital mobility and the optimal interest rate differs from the international rate. We argue that the domestic interest rate should be temporarily above the international rate. We also find that capital controls can still help reach the first best when the planner has more fiscal instruments.
Resumo:
This paper considers an alternative perspective to China's exchange rate policy. It studies a semi-open economy where the private sector has no access to international capital markets but the central bank has full access. Moreover, it assumes limited financial development generating a large demand for saving instruments by the private sector. The paper analyzes the optimal exchange rate policy by modeling the central bank as a Ramsey planner. Its main result is that in a growth acceleration episode it is optimal to have an initial real depreciation of the currency combined with an accumulation of reserves, which is consistent with the Chinese experience. This depreciation is followed by an appreciation in the long run. The paper also shows that the optimal exchange rate path is close to the one that would result in an economy with full capital mobility and no central bank intervention.