196 resultados para Noncommutative Differential Forms
Resumo:
Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.
Resumo:
The molecular mechanisms regulating the initial uptake of inorganic sulfate in plants are still largely unknown. The current model for the regulation of sulfate uptake and assimilation attributes positive and negative regulatory roles to O-acetyl-serine (O-acetyl-Ser) and glutathione, respectively. This model seems to suffer from exceptions and it has not yet been clearly validated whether intracellular O-acetyl-Ser and glutathione levels have impacts on regulation. The transcript level of the two high-affinity sulfate transporters SULTR1.1 and SULTR1.2 responsible for sulfate uptake from the soil solution was compared to the intracellular contents of O-acetyl-Ser, glutathione, and sulfate in roots of plants submitted to a wide diversity of experimental conditions. SULTR1.1 and SULTR1.2 were differentially expressed and neither of the genes was regulated in accordance with the current model. The SULTR1.1 transcript level was mainly altered in response to the sulfur-related treatments. Split-root experiments show that the expression of SULTR1.1 is locally regulated in response to sulfate starvation. In contrast, accumulation of SULTR1.2 transcripts appeared to be mainly related to metabolic demand and is controlled by photoperiod. On the basis of the new molecular insights provided in this study, we suggest that the expression of the two transporters depends on different regulatory networks. We hypothesize that interplay between SULTR1.1 and SULTR1.2 transporters could be an important mechanism to regulate sulfate content in the roots
Resumo:
Aldosterone stimulation of the mineralocorticoid receptor (MR) is involved in numerous physiological responses, including Na+ homeostasis, blood pressure control, and heart failure. Aldosterone binding to MR promotes different post-translational modifications that regulate MR nuclear translocation, gene expression, and finally receptor degradation. Here, we show that aldosterone stimulates rapid phosphorylation of MR via ERK1/2 in a dose-dependent manner (from 0.1 to 10 nM) in renal epithelial cells. This phosphorylation induces an increase of MR apparent molecular weight, with a maximal upward shift of 30 kDa. Strikingly, these modifications are critical for the regulation of the MR ubiquitylation state. Indeed, we find that MR is monoubiquitylated in its basal state, and this status is sustained by the tumor suppressor gene 101 (Tsg101). Phosphorylation leads to disruption of MR/Tsg101 association and monoubiquitin removal. These events prompt polyubiquitin-dependent destabilization of MR and degradation. Preventing MR phosphorylation by ERK1/2 inhibition or mutation of target serines affects the sequential mechanisms of MR ubiquitylation and inhibits the aldosterone-mediated degradation. Our data provide a novel model of negative feedback of aldosterone signaling, involving sequential phosphorylation, monoubiquitin removal and subsequent polyubiquitylation/degradation of MR.
Resumo:
BACKGROUND: Finding genes that are differentially expressed between conditions is an integral part of understanding the molecular basis of phenotypic variation. In the past decades, DNA microarrays have been used extensively to quantify the abundance of mRNA corresponding to different genes, and more recently high-throughput sequencing of cDNA (RNA-seq) has emerged as a powerful competitor. As the cost of sequencing decreases, it is conceivable that the use of RNA-seq for differential expression analysis will increase rapidly. To exploit the possibilities and address the challenges posed by this relatively new type of data, a number of software packages have been developed especially for differential expression analysis of RNA-seq data. RESULTS: We conducted an extensive comparison of eleven methods for differential expression analysis of RNA-seq data. All methods are freely available within the R framework and take as input a matrix of counts, i.e. the number of reads mapping to each genomic feature of interest in each of a number of samples. We evaluate the methods based on both simulated data and real RNA-seq data. CONCLUSIONS: Very small sample sizes, which are still common in RNA-seq experiments, impose problems for all evaluated methods and any results obtained under such conditions should be interpreted with caution. For larger sample sizes, the methods combining a variance-stabilizing transformation with the 'limma' method for differential expression analysis perform well under many different conditions, as does the nonparametric SAMseq method.
Resumo:
Streptozotocin injection in animals destroys pancreatic beta cells, leading to insulinopenic diabetes. Here, we evaluated the toxic effect of streptozotocin (STZ) in GLUT2(-/-) mice reexpressing either GLUT1 or GLUT2 in their beta cells under the rat insulin promoter (RIPG1 x G2(-/-) and RIPG2 x G2(-/-) mice, respectively). We demonstrated that injection of STZ into RIPG2 x G2(-/-) mice induced hyperglycemia (>20 mM) and an approximately 80% reduction in pancreatic insulin content. In vitro, the viability of RIPG2 x G2(-/-) islets was also strongly reduced. In contrast, STZ did not induce hyperglycemia in RIPG1 x G2(-/-) mice and did not reduce pancreatic insulin content. The viability of in vitro cultured RIPG1 x G2(-/-) islets was also unaffected by STZ. As islets from each type of transgenic mice were functionally indistinguishable, these data strongly support the notion that STZ toxicity toward beta cells depends on the expression of GLUT2.
Resumo:
Mouse mammary tumor virus (MMTV) expresses a superantigen (SAg) which plays a critical role in the viral life cycle. We have recently described the new infectious MMTV (SIM) encoding a Vbeta4-specific SAg in mice with a TCR-Vbeta(b) haplotype. We have now compared the SAg activity of this virus in BALB/c mice harboring the TCR-Vbeta(a), TCR-Vbeta(b) or TCR-Vbeta(c) haplotypes which differ by a central deletion in the TCR-Vbeta(a) and TCR-Vbeta(c) locus and by mutations in some of the remaining Vbeta elements. Injection of MMTV (SIM) led to a strong stimulation of Vbeta4+ CD4+ T cells in TCR-Vbeta(b) mice, but only to a weak stimulation of these cells in TCR-Vbeta(a) or TCR-Vbeta(c) mice. A large increase in the percentage of Vbeta10+ cells was observed among CD4+ T cells in mice with the Vbeta(a) or Vbeta(c), but not the Vbeta(b) TCR-Vbeta haplotype. Vbeta10+ cells dominated the response when Vbeta10(a/c) and Vbeta4 subsets were present together. This is the first report of a viral SAg interacting with murine Vbeta10+ cells. Six amino acid differences between Vbeta10(a/c) and Vbeta10(b) could account for the gain of reactivity of Vbeta10(a/c) to the MMTV(SIM) SAg. No mutations were found in the hypervariable region 4 (HV4) of the TCR. Mutations at positions 22 and 28 introduce into Vbeta10(a/c) the same amino acids which are found at these positions in the MMTV(SIM)-reactive Vbeta4. Tridimensional models indicated that these amino acids lie close to HV4 and are likely to be important for the interaction of the SAg with the TCR.
Resumo:
Autoimmune Pancreatitis (AIP) is a new nosological entity that was first reported by Sarles et al. in 1961 and then named by Yoshida et al. in 1995 in Japan. It was then ignored by many Western researchers and now, in the last decade; it appears to have been recognized worldwide. AIP is a distinct form a chronic pancreatitis with an immune mediated fibroinflammatory process that has unique histopathologic features that makes it distinguishable from other forms of pancreatitis. Moreover, AIP is the only type of pancreatitis that responds to steroid administration. The Honolulu consensus document that has recently been published by Chari et al. described the histopathologic and clinical subtypes of AIP. Indeed, it appears that there are two forms of AIP, with different prevalence in Europe and Asia and distinct clinical profiles. The first subtype, the most common type in Asia, has recently been named Lymphoplasmocytic sclerosing pancreatitis (LPSP) or type I AIP because of its histological features and its association with elevated IgG serum levels and various autoantibodies. The second one is called idiopathic duct centric pancreatitis, IDCP, or type II AIP, that barely exists in Japan, but more accounted in Caucasian people. IDCP is recognized by its particular histology that is a granulocytic epithelial lesion (GEL) which makes some people call it AIP with GEL. Still nowadays, the diagnosis of AIP is a challenge. AIP can only be definitively diagnosed by histological examination. The main differential diagnosis of AIP is, except chronic pancreatitis, pancreatic cancer. That explains why there are still some unnecessary resections. Several groups have proposed diagnostic criteria for AIP as in Japan, Korea, Germany, Italy and the United States. Thus, it is important to find an international consensus. Above all, it is important to find new criteria as specific markers in the serum and the pancreatic tissues, for example using proteomics, to be able to diagnosis both types of AIP, and distinguish AIP from pancreatic cancer in order to avoid surgical resection in patients with AIP. The aim of this project is to review all relevant studies about AIP and to document all the available diagnostic tools.
Resumo:
Rhizobacteria-induced systemic resistance (ISR) and pathogen-induced systemic acquired resistance (SAR) have a broad, yet partly distinct, range of effectiveness against pathogenic microorganisms. Here, we investigated the effectiveness of ISR and SAR in Arabidopsis against the tissue-chewing insects Pieris rapae and Spodoptera exigua. Resistance against insects consists of direct defense, such as the production of toxins and feeding deterrents and indirect defense such as the production of plant volatiles that attract carnivorous enemies of the herbivores. Wind-tunnel experiments revealed that ISR and SAR did not affect herbivore-induced attraction of the parasitic wasp Cotesia rubecula (indirect defense). By contrast, ISR and SAR significantly reduced growth and development of the generalist herbivore S. exigua, although not that of the specialist P. rapae. This enhanced direct defense against S. exigua was associated with potentiated expression of the defense-related genes PDF1.2 and HEL. Expression profiling using a dedicated cDNA microarray revealed four additional, differentially primed genes in microbially induced S. exigua-challenged plants, three of which encode a lipid-transfer protein. Together, these results indicate that microbially induced plants are differentially primed for enhanced insect-responsive gene expression that is associated with increased direct defense against the generalist S. exigua but not against the specialist P. rapae.
Resumo:
The expression patterns of the three different peroxisome proliferator-activated receptor (PPAR) isotypes have been determined during rat embryonic development by in situ hybridization. The expression of PPARalpha starts late in development, with increasing levels in organs such as liver, kidney, intestine, and pancreas, in which it will also be present later in adulthood to regulate its specific target genes. PPARalpha is also transiently expressed in the embryonic epidermis and central nervous system. PPARgamma presents a very restricted pattern of expression, being strongly expressed in brown adipose tissue, in which differentiation it has been shown to participate. Like PPARalpha, it is also expressed transiently in the central nervous system. Interestingly, PPARalpha, -beta and -gamma are coexpressed at high levels in brown adipose tissue. Finally, the high and ubiquitous expression of PPARbeta suggests some fundamental role(s) that this receptor might play throughout development.
Resumo:
Fragile X syndrome (FXS) is an X-linked condition associated with intellectual disability and behavioral problems. It is caused by expansion of a CGG repeat in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. This mutation is associated with hypermethylation at the FMR1 promoter and resultant transcriptional silencing. FMR1 silencing has many consequences, including up-regulation of metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. mGluR5 receptor antagonists have shown promise in preclinical FXS models and in one small open-label study of FXS. We examined whether a receptor subtype-selective inhibitor of mGluR5, AFQ056, improves the behavioral symptoms of FXS in a randomized, double-blind, two-treatment, two-period, crossover study of 30 male FXS patients aged 18 to 35 years. We detected no significant effects of treatment on the primary outcome measure, the Aberrant Behavior Checklist-Community Edition (ABC-C) score, at day 19 or 20 of treatment. In an exploratory analysis, however, seven patients with full FMR1 promoter methylation and no detectable FMR1 messenger RNA improved, as measured with the ABC-C, significantly more after AFQ056 treatment than with placebo (P < 0.001). We detected no response in 18 patients with partial promoter methylation. Twenty-four patients experienced an adverse event, which was mostly mild to moderately severe fatigue or headache. If confirmed in larger and longer-term studies, these results suggest that blockade of the mGluR5 receptor in patients with full methylation at the FMR1 promoter may show improvement in the behavioral attributes of FXS.