122 resultados para Mol, Annemarie
Resumo:
Introduction: Recent data have suggested that a population of CD4+ CD25high T cells, phenotypically characterized by the expression of CD45RO and CD127, is significantly expanded in stable liver and kidney transplant recipients and represents alloreactive T cells. Induction therapies may have an impact on this alloreactive T cell population. In this study, we prospectively analyzed CD4+ CD25high CD45RO+ CD127high T cells after induction with either thymoglobulin or basiliximab. Patients & methods: A total of twenty-seven kidney transplant recipients were prospectively enrolled; 14 received thymoglobulin induction followed by a 4-day course of steroids with tacrolimus and mycophenolate mofetil ("thymo group"), and 13 received basiliximab induction followed by standard triple immunosuppression (tacrolimus, mycophenolate mofetil and prednisone) ("BSX group"). Phenotypical analysis by flow cytometry of the expression of CD25, CD45RO and CD127 on peripheral CD4+ T cells was performed at 0, 3 and 6 months after transplantation. Twenty-four healthy subjects (HS) were studied as controls. Results: There were no differences in baseline characteristics between the groups; at 6 months, patient survival (100%), graft survival (100%), serum creatinine (thymo versus BSX group: 129 versus 125 μmol/l) and acute rejection (2/14 versus 2/13) were not significantly different. Thymo induction produced a strong CD4 T cell depletion. As compared to pre-transplantation values, an expansion of the alloreactive T cell population was observed at 3 months in both thymo (mean: from 6.38% to 14.72%) and BSX (from 8.01% to 18.42%) groups. At 6 months, the alloreactive T cell population remained significantly expanded in the thymo group (16.92 ± 2.87%) whereas it tended to decrease in the BSX group (10.22 ± 1.38%). Conclusion: Overall, our results indicate that the expansion of alloreactive T cells occurs rapidly after transplantation in patients receiving either thymo or BSX induction. Whether differences at later timepoints or whether different IS regimens may modify this alloreactive population remains to be studied.
Resumo:
Urinary lithogenic and inhibitory factors were studied in 27 preterm infants; 16 had total parenteral nutrition (TPN) and 11 had breastmilk with an additional glucose-sodium chloride infusion. Urines were collected for 24 hours on day 2 (period A), day 3 (B), and once between days 4 and 10 (C). Urinary calcium oxalate saturation was calculated by the computer program EQUIL 2. Renal ultrasonography was performed every second week until discharge. The calcium/creatinine ratio increased in infants on TPN (A 0.91; C 1.68 mol/mol) and was significantly higher at period C than that in infants on breastmilk/infusion (A 0.52; C 0.36). The oxalate/creatinine ratio was persistently higher with TPN (203 mmol/mol) than with breastmilk/infusion (98; 137). The citrate/creatinine remained constant with TPN (0.44 mol/mol), whereas it increased significantly with breastmilk/infusion (0.26; 0.49). Calcium/citrate rose considerably with TPN, but decreased with breastmilk/infusion to a significantly lower level than with TPN. The urinary calcium oxalate saturation increased with TPN (2.4; 4.5) and decreased with breastmilk/infusion (2.1; 1.5) to a significantly lower value than with TPN. Nephrocalcinosis developed in two infants on TPN. Mean daily calcium intake was similar in both groups, whereas protein, sodium, and phosphorus intake were significantly higher on TPN. It is concluded that the increase in urinary calcium oxalate saturation observed with TPN is due to the combined effect of an increased urinary calcium excretion and higher urinary oxalate/creatinine and calcium/citrate ratios. The changes observed are likely to be caused by TPN itself, which differs in several respects from breastmilk feeding.
Resumo:
THESIS ABSTRACT Garnets are one of the key metamorphic minerals used to study peak metamorphic conditions or crystallization ages. Equilibrium is typically assumed between the garnet and the matrix. This thesis attempts to understand garnet growth in the Zermatt-Saas Fee (ZSF) eclogites, and discusses consequences for Sm/Nd and Lu/Hf dating and the equilibrium assumption. All studied garnets from the ZSF eclogites are strongly zoned in Mn, Fe, Mg, and Ca. Methods based on chemical zoning patterns and on 3D spatial statistics indicate different growth mechanisms depending on the sample studied. Garnets from the Pfulwe area are grown in a system where surface kinetics likely dominated over intergranular diffusion kinetics. Garnets fram two other localities, Nuarsax and Lago di Cignana, seem to have grown in a system where intergranular diffusion kinetics were dominating over surface kinetics, at least during initial growth. Garnets reveal strong prograde REE+Y zoning. They contain narrow central peaks for Lu + Yb + Tm ± Er and at least one additional small peak towards the rim. The REE Sm + Eu + Gd + Tb ± Dy are depleted in the cores but show one prominent peak close to the rim. It is shown that these patterns cam be explained using a transient matrix diffusion model where REE uptake is limited by diffusion in the matrix surrounding the porphyroblast. The secondary peaks in the garnet profiles are interpreted to reflect thermally activated diffusion due to a temperature increase during prograde metamorphism. The model predicts anomalously low 176Lu/177Hf and 147Sm/144Nd ratios in garnets where growth rates are fast compared to diffusion of the REE, which decreases garnet isochron precisions. The sharp Lu zoning was further used to constrain maximum Lu volume diffusion rates in garnet. The modeled minimum pre-exponential diffusion coefficient which fits the measured central peak is in the order of Do = 5.7* 106 m2/s, taking an activation energy of 270 kJ/mol. The latter was chosen in agreement with experimentally determined values. This can be used to estimate a minimum closure temperature of around 630°C for the ZSF zone. Zoning of REE was combined with published Lu/Hf and Sm/Nd age information to redefine the prograde crystallization interval for Lago di Cignana UHP eclogites. Modeling revealed that a prograde growth interval in the order of 25 m.y. is needed to produce the measured spread in ages. RÉSUMÉ Le grenat est un minéral métamorphique clé pour déterminer les conditions du pic de métamorphisme ainsi que l'âge de cristallisation. L'équilibre entre le grenat et la matrice est requis. Cette étude a pour but de comprendre la croissance du grenat dans les éclogites de la zone de Zermatt-Saas Fee (ZSF) et d'examiner quelques conséquences sur les datations Sm/Nd et Lu/Hf. Tous les grenats des éclogites de ZSF étudiés sont fortement zonés en Mn, Fe, Mg et partiellement en Ca. Les différentes méthodes basées sur le modèle de zonation chimique ainsi que sur les statistiques de répartition spatiale en 3D indiquent un mécanisme de croissance différent en fonction de la localité d'échantillonnage. Les grenats provenant de la zone de Pfulwe ont probablement crû dans un système principalement dominé par la cinétique de surface au détriment de 1a cinétique de diffusion intergranulaire. Les grenats provenant de deux autres localités, Nuarsax et Lago di Cignana, semblent avoir cristallisé dans un système dominé par la diffusion intergranulaire, au moins durant les premiers stades de croissance. Les grenats montrent une forte zonation prograde en Terres Rares (REE) ainsi qu'en Y. Les profils présentent au coeur un pic étroit en Lu + Yb+ Tm ± Er et au moins un petit pic supplémentaire vers le bord. Les coeurs des grenats sont appauvris en Sm + Eu + Gd + Tb ± Dy, mais les bords sont marqués par un pic important de ces REE. Ces profils s'expliquent par un modèle de diffusion matricielle dans lequel l'apport en REE est limité par la diffusion dans la matrice environnant les porphyroblastes. Les pics secondaires en bordure de grain reflètent la diffusion activée par l'augmentation de la température lors du métamorphisme prograde. Ce modèle prédit des rapports 176Lu/177Hf et 147Sm/144Nd anormalement bas lorsque les taux de croissance sont plus rapides que la diffusion des REE, ce qui diminue la précision des isochrones impliquant le grenat. La zonation nette en Lu a permis de contraindre le maximum de diffusion volumique par une approche numérique. Le coefficient de diffusion minimum modélisé en adéquation avec les pics mesurés est de l'ordre de Do = 5.7*10-6 m2/s, en prenant une énergie d'activation ~270 kJ/mol déterminée expérimentalement. Ainsi, la température de clôture minimale est estimée aux alentours de 630°C pour la zone ZSF. Des nouvelles données de zonation de REE sont combinées aux âges obtenus avec les rapports Lu/Hf et Sm/Nd qui redéfissent l'intervalle de cristallisation prograde pour les éclogites UHP de Lago di Cignana. La modélisation permet d'attribuer au minimum un intervalle de croissance prograde de 25 Ma afin d'obtenir les âges préalablement mesurés. RESUME GRAND PUBLIC L'un des principaux buts du pétrologue .métamorphique est d'extraire des roches les informations sur l'évolution temporelle, thermique et barométrique qu'elles ont subi au cours de la formation d'une chaîne de montagne. Le grenat est l'un des minéraux clés dans une grande variété de roches métamorphiques. Il a fait l'objet de nombreuses études dans des terrains d'origines variées ou lors d'études expérimentales afin de comprendre ses domaines de stabilité, ses réactions et sa coexistence avec d'autres minéraux. Cela fait du grenat l'un des minéraux les plus attractifs pour la datation des roches. Cependant, lorsqu'on l'utilise pour la datation et/ou pour la géothermobarométrie, on suppose toujours que le grenat croît en équilibre avec les phases coexistantes de la matrice. Pourtant, la croissance d'un minéral est en général liée au processus de déséquilibre. Cette étude a pour but de comprendre comment croît le grenat dans les éclogites de Zermatt - Saas Fee et donc d'évaluer le degré de déséquilibre. Il s'agit aussi d'expliquer les différences d'âges obtenues grâce aux grenats dans les différentes localités de l'unité de Zermatt-Saas Fee. La principale question posée lors de l'étude des mécanismes de croissance du grenat est: Parmi les processus en jeu lors de la croissance du grenat (dissolution des anciens minéraux, transport des éléments vers le nouveau grenat, précipitation d'une nouvelle couche en surface du minéral), lequel est le plus lent et ainsi détermine le degré de déséquilibre? En effet, les grenats d'une des localités (Pfulwe) indiquent que le phénomène d'adhérence en surface est le plus lent, contrairement aux grenats des autres localités (Lago di Cignana, Nuarsax) dans lesquels ce sont les processus de transport qui sont les plus lents. Cela montre que les processus dominants sont variables, même dans des roches similaires de la même unité tectonique. Ceci implique que les processus doivent être déterminés individuellement pour chaque roche afin d'évaluer le degré de déséquilibre du grenat dans la roche. Tous les grenats analysés présentent au coeur une forte concentration de Terres Rares: Lu + Yb + Tm ± Er qui décroît vers le bord du grain. Inversement, les Terres Rares Sm + Eu + Gd + Tb ± Dy sont appauvries au coeur et se concentrent en bordure du grain. La modélisation révèle que ces profils sont-dus à des cinétiques lentes de transport des Terres Rares. De plus, les modèles prédisent des concentrations basses en éléments radiogéniques pères dans certaines roches, ce qui influence fortement sur la précision des âges obtenus par la méthode d'isochrone. Ceci signifie que les roches les plus adaptées pour les datations ne doivent contenir ni beaucoup de grenat ni de très gros cristaux, car dans ce cas, la compétition des éléments entre les cristaux limite à de faibles concentrations la quantité d'éléments pères dans chaque cristal.
Resumo:
It has not been well established whether the mechanisms participating in pH regulation in the anoxic-reoxygenated developing myocardium resemble those operating in the adult. We have specially examined the importance of Na+/H+ exchange (NHE) and HCO3-dependent transports in cardiac activity after changes in extracellular pH (pHo). Spontaneously contracting hearts isolated from 4-day-old chick embryos were submitted to single or repeated anoxia (1 min) followed by reoxygenation (10 min). The chronotropic, dromotropic and inotropic responses of the hearts were determined in standard HCO3- buffer at pHo 7.4 and at pHo 6.5 (hypercapnic acidosis). In distinct experiments, acidotic anoxia preceded reoxygenation at pHo 7.4. NHE was blocked with amiloride derivative HMA (1 micro mol/l) and HCO3-dependent transports were inactivated by replacement of HCO3 or blockade with stilbene derivative DIDS (100 micro mol/l). Anoxia caused transient tachycardia, depressed mechanical function and induced contracture. Reoxygenation temporarily provoked cardiac arrest, atrio-ventricular (AV) block, arrhythmias and depression of contractility. Addition of DIDS or substitution of HCO3 at pHo 7.4 had the same effects as acidosis per se, i.e. shortened contractile activity and increased incidence of arrhythmias during anoxia, prolonged cardioplegia and provoked arrhythmias at reoxygenation. Under anoxia at pHo 6.5/reoxygenation at pHo 7.4, cardioplegia, AV block and arrhythmias were all markedly prolonged. Interestingly, in the latter protocol, DIDS suppressed AV block and arrhythmias during reoxygenation, whereas HMA had no effect. Thus, intracellular pH regulation in the anoxic-reoxygenated embryonic heart appears to depend predominantly on HCO3 availability and transport. Furthermore, pharmacological inhibition of anion transport can protect against reoxygenation-induced dysfunction.
Resumo:
Rho GTPases regulate the actin cytoskeleton in all eukaryotes. Fission yeast Cdc42 is involved in actin cable assembly and formin For3 regulation. We isolated cdc42-879 as a thermosensitive strain with actin cable and For3 localization defects. In a multicopy suppressor screening, we identified pob1(+) as suppressor of cdc42-879 thermosensitivity. Pob1 overexpression also partially restores actin cables and localization of For3 in the mutant strain. Pob1 interacts with Cdc42 and this GTPase regulates Pob1 localization and/or stability. The C-terminal pleckstrin homology (PH) domain of Pob1 is required for Cdc42 binding. Pob1 also binds to For3 through its N-terminal sterile alpha motif (SAM) domain and contributes to the formin localization at the cell tips. The previously described pob1-664 mutant strain (Mol. Biol. Cell. 10, 2745-2757, 1999), which carries a mutation in the PH domain, as well as pob1 mutant strains in which Pob1 lacks the N-terminal region (pob1DeltaN) or the SAM domain (pob1DeltaSAM), have cytoskeletal defects similar to that of cdc42-879 cells. Expression of constitutively active For3DAD* partially restores actin organization in cdc42-879, pob1-664, pob1DeltaN, and pob1DeltaSAM. Therefore, we propose that Pob1 is required for For3 localization to the tips and facilitates Cdc42-mediated relief of For3 autoinhibition to stimulate actin cable formation.
Resumo:
BACKGROUND: Lactate protects mice against the ischaemic damage resulting from transient middle cerebral artery occlusion (MCAO) when administered intracerebroventricularly at reperfusion, yielding smaller lesion sizes and a better neurological outcome 48 h after ischaemia. We have now tested whether the beneficial effect of lactate is long-lasting and if lactate can be administered intravenously. METHODS: Male ICR-CD1 mice were subjected to 15-min suture MCAO under xylazine + ketamine anaesthesia. Na L-lactate (2 µl of 100 mmol/l) or vehicle was administered intracerebroventricularly at reperfusion. The neurological deficit was evaluated using a composite deficit score based on the neurological score, the rotarod test and the beam walking test. Mice were sacrificed at 14 days. In a second set of experiments, Na L-lactate (1 µmol/g body weight) was administered intravenously into the tail vein at reperfusion. The neurological deficit and the lesion volume were measured at 48 h. RESULTS: Intracerebroventricularly injected lactate induced sustained neuroprotection shown by smaller neurological deficits at 7 days (median = 0, min = 0, max = 3, n = 7 vs. median = 2, min = 1, max = 4.5, n = 5, p < 0.05) and 14 days after ischaemia (median = 0, min = 0, max = 3, n = 7 vs. median = 3, min = 0.5, max = 3, n = 7, p = 0.05). Reduced tissue damage was demonstrated by attenuated hemispheric atrophy at 14 days (1.3 ± 4.0 mm(3), n = 7 vs. 12.1 ± 3.8 mm(3), n = 5, p < 0.05) in lactate-treated animals. Systemic intravenous lactate administration was also neuroprotective and attenuated the deficit (median = 1, min = 0, max = 2.5, n = 12) compared to vehicle treatment (median = 1.5, min = 1, max = 8, n = 12, p < 0.05) as well as the lesion volume at 48 h (13.7 ± 12.2 mm(3), n = 12 vs. 29.6 ± 25.4 mm(3), n = 12, p < 0.05). CONCLUSIONS: The beneficial effect of lactate is long-lasting: lactate protects the mouse brain against ischaemic damage when supplied intracerebroventricularly during reperfusion with behavioural and histological benefits persisting 2 weeks after ischaemia. Importantly, lactate also protects after systemic intravenous administration, a more suitable route of administration in a clinical emergency setting. These findings provide further steps to bring this physiological, commonly available and inexpensive neuroprotectant closer to clinical translation for stroke.
Resumo:
A monoclonal antibody, LAU-A1, which selectively reacts with all cells of the T-lineage, was derived from a fusion between spleen cells of a mouse immunized with paediatric thymocytes and mouse myeloma P X 63/Ag8 cells. As shown by an antibody-binding radioimmunoassay and analysis by flow microfluorometry of cells labelled by indirect immunofluorescence, the LAU-A1 antibody reacted with all six T-cell lines but not with any of the B-cell lines or myeloid cell lines tested from a panel of 17 human hematopoietic cell lines. The LAU-A1 antibody was also shown to react with the majority of thymocytes and E-rosette-enriched peripheral blood lymphocytes. Among the malignant cell populations tested, the blasts from all 20 patients with acute T-cell lymphoblastic leukemia (T-ALL) were found to react with the LAU-A1 antibody, whereas blasts from 85 patients with common ALL and 63 patients with acute myeloid leukemias were entirely negative. Examination of frozen tissue sections from fetal and adult thymuses stained by an indirect immunoperoxidase method revealed that cells expressing the LAU-A1 antigen were localized in both the cortex and the medulla. From the very broad reactivity spectrum of LAU-A1 antibody, we conclude that this antibody is directed against a T-cell antigen expressed throughout the T-cell differentiation lineage. SDS-PAGE analysis of immunoprecipitates formed by LAU-A1 antibody with detergent lysates of radiolabeled T-cells showed that the LAU-A1 antigen had an apparent mol. wt of 76,000 under non-reducing conditions. Under reducing conditions a single band with an apparent mol. wt of 40,000 was observed. Two-dimensional SDS-PAGE analysis confirmed that the 76,000 mol. wt component consisted of an S-S-linked dimeric complex. The surface membrane expression of LAU-A1 antigen on HSB-2 T-cells was modulated when these cells were cultured in the presence of LAU-A1 antibody. Re-expression of LAU-A1 antigen occurred within 24 hr after transfer of the modulated cells into antibody-free medium.
Resumo:
BACKGROUND: Acute kidney injury (AKI) is common in patients undergoing cardiac surgery among whom it is associated with poor outcomes, prolonged hospital stays and increased mortality. Statin drugs can produce more than one effect independent of their lipid lowering effect, and may improve kidney injury through inhibition of postoperative inflammatory responses. OBJECTIVES: This review aimed to look at the evidence supporting the benefits of perioperative statins for AKI prevention in hospitalised adults after surgery who require cardiac bypass. The main objectives were to 1) determine whether use of statins was associated with preventing AKI development; 2) determine whether use of statins was associated with reductions in in-hospital mortality; 3) determine whether use of statins was associated with reduced need for RRT; and 4) determine any adverse effects associated with the use of statins. SEARCH METHODS: We searched the Cochrane Renal Group's Specialised Register to 13 January 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. SELECTION CRITERIA: Randomised controlled trials (RCTs) that compared administration of statin therapy with placebo or standard clinical care in adult patients undergoing surgery requiring cardiopulmonary bypass and reporting AKI, serum creatinine (SCr) or need for renal replacement therapy (RRT) as an outcome were eligible for inclusion. All forms and dosages of statins in conjunction with any duration of pre-operative therapy were considered for inclusion in this review. DATA COLLECTION AND ANALYSIS: All authors extracted data independently and assessments were cross-checked by a second author. Likewise, assessment of study risk of bias was initially conducted by one author and then by a second author to ensure accuracy. Disagreements were arbitrated among authors until consensus was reached. Authors from two of the included studies provided additional data surrounding post-operative SCr as well as need for RRT. Meta-analyses were used to assess the outcomes of AKI, SCr and mortality rate. Data for the outcomes of RRT and adverse effects were not pooled. Adverse effects taken into account were those reported by the authors of included studies. MAIN RESULTS: We included seven studies (662 participants) in this review. All except one study was assessed as being at high risk of bias. Three studies assessed atorvastatin, three assessed simvastatin and one investigated rosuvastatin. All studies collected data during the immediate perioperative period only; data collection to hospital discharge and postoperative biochemical data collection ranged from 24 hours to 7 days. Overall, pre-operative statin treatment was not associated with a reduction in postoperative AKI, need for RRT, or mortality. Only two studies (195 participants) reported postoperative SCr level. In those studies, patients allocated to receive statins had lower postoperative SCr concentrations compared with those allocated to no drug treatment/placebo (MD 21.2 µmol/L, 95% CI -31.1 to -11.1). Adverse effects were adequately reported in only one study; no difference was found between the statin group compared to placebo. AUTHORS' CONCLUSIONS: Analysis of currently available data did not suggest that preoperative statin use is associated with decreased incidence of AKI in adults after surgery who required cardiac bypass. Although a significant reduction in SCr was seen postoperatively in people treated with statins, this result was driven by results from a single study, where SCr was considered as a secondary outcome. The results of the meta-analysis should be interpreted with caution; few studies were included in subgroup analyses, and significant differences in methodology exist among the included studies. Large high quality RCTs are required to establish the safety and efficacy of statins to prevent AKI after cardiac surgery.
Resumo:
BACKGROUND: The Richalet hypoxia sensitivity test (RT), which quantifies the cardiorespiratory response to acute hypoxia during exercise at an intensity corresponding to a heart rate of ~130 bpm in normoxia, can predict susceptibility of altitude sickness. Its ability to predict exercise performance in hypoxia is unknown. OBJECTIVES: Investigate: (1) whether cerebral blood flow (CBF) and cerebral tissue oxygenation (O2Hb; oxygenated hemoglobin, HHb; deoxygenated hemoglobin) responses during RT predict time-trial cycling (TT) performance in severe hypoxia; (2) if subjects with blunted cardiorespiratory responses during RT show greater impairment of TT performance in severe hypoxia. STUDY DESIGN: Thirteen men [27 ± 7 years (mean ± SD), Wmax: 385 ± 30 W] were evaluated with RT and the results related to two 15 km TT, in normoxia and severe hypoxia (FIO2 = 0.11). RESULTS: During RT, mean middle cerebral artery blood velocity (MCAv: index of CBF) was unaltered with hypoxia at rest (p > 0.05), while it was increased during normoxic (+22 ± 12 %, p < 0.05) and hypoxic exercise (+33 ± 17 %, p < 0.05). Resting hypoxia lowered cerebral O2Hb by 2.2 ± 1.2 μmol (p < 0.05 vs. resting normoxia); hypoxic exercise further lowered it to -7.6 ± 3.1 μmol below baseline (p < 0.05). Cerebral HHb, increased by 3.5 ± 1.8 μmol in resting hypoxia (p < 0.05), and further to 8.5 ± 2.9 μmol in hypoxic exercise (p < 0.05). Changes in CBF and cerebral tissue oxygenation during RT did not correlate with TT performance loss (R = 0.4, p > 0.05 and R = 0.5, p > 0.05, respectively), while tissue oxygenation and SaO2 changes during TT did (R = -0.76, p < 0.05). Significant correlations were observed between SaO2, MCAv and HHb during RT (R = -0.77, -0.76 and 0.84 respectively, p < 0.05 in all cases). CONCLUSIONS: CBF and cerebral tissue oxygenation changes during RT do not predict performance impairment in hypoxia. Since the changes in SaO2 and brain HHb during the TT correlated with performance impairment, the hypothesis that brain oxygenation plays a limiting role for global exercise in conditions of severe hypoxia remains to be tested further.
Resumo:
The amphibian micronucleus test has been widely used during the last 30 years to test the genotoxic properties of several chemicals and as a tool for ecogenotoxic monitoring. The vast majority of these studies were performed on peripheral blood of urodelan larvae and anuran tadpoles and to a lesser extent adults were also used. In this study, we developed protocols for measuring micronuclei in adult shed skin cells and larval gill cells of the Italian crested newt (Triturus carnifex). Amphibians were collected from ponds in two protected areas in Italy that differed in their radon content. Twenty-three adult newts and 31 larvae were captured from the radon-rich pond, while 20 adults and 27 larvae were taken from the radon-free site. The animals were brought to the laboratory and the micronucleus test was performed on peripheral blood and shed skins taken from the adults and on larval gills. Samples from the radon-rich site showed micronucleus frequencies higher than those from the radon-free site and the difference was statistically significant in gill cells (P < 0.00001). Moreover, the larval gills seem to be more sensitive than the adult tissues. This method represents an easy (and noninvasive in the case of the shed skin) application of the micronucleus assay that can be useful for environmental studies in situ. Environ. Mol. Mutagen. 56:412-417, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
BACKGROUND: Normobaric oxygen therapy is frequently applied in neurocritical care, however, whether supplemental FiO2 has beneficial cerebral effects is still controversial. We examined in patients with severe traumatic brain injury (TBI) the effect of incremental FiO2 on cerebral excitotoxicity, quantified by cerebral microdialysis (CMD) glutamate. METHODS: This was a retrospective analysis of a database of severe TBI patients monitored with CMD and brain tissue oxygen (PbtO2). The relationship of FiO2-categorized into four separate ranges (<40, 41-60, 61-80, and >80 %)-with CMD glutamate was examined using ANOVA with Tukey's post hoc test. RESULTS: A total of 1,130 CMD samples from 36 patients-monitored for a median of 4 days-were examined. After adjusting for brain (PbtO2, intracranial pressure, cerebral perfusion pressure, lactate/pyruvate ratio, Marshall CT score) and systemic (PaCO2, PaO2, hemoglobin, APACHE score) covariates, high FiO2 was associated with a progressive increase in CMD glutamate [8.8 (95 % confidence interval 7.4-10.2) µmol/L at FiO2 < 40 % vs. 12.8 (10.9-14.7) µmol/L at 41-60 % FiO2, 19.3 (15.6-23) µmol/L at 61-80 % FiO2, and 22.6 (16.7-28.5) µmol/L at FiO2 > 80 %; multivariate-adjusted p < 0.05]. The threshold of FiO2-related increase in CMD glutamate was lower for samples with normal versus low PbtO2 < 20 mmHg (FiO2 > 40 % vs. FiO2 > 60 %). Hyperoxia (PaO2 > 150 mmHg) was also associated with increased CMD glutamate (adjusted p < 0.001). CONCLUSIONS: Incremental normobaric FiO2 levels were associated with increased cerebral excitotoxicity in patients with severe TBI, independent from PbtO2 and other important cerebral and systemic determinants. These data suggest that supra-normal oxygen may aggravate secondary brain damage after severe TBI.
Resumo:
Urate is the metabolic end point of purines in humans. Although supra-physiological plasma urate levels are associated with obesity, insulin resistance, dyslipidemia, and hypertension, a causative role is debated. We previously established a mouse model of hyperuricemia by liver-specific deletion of Glut9, a urate transporter that provides urate to the hepatocyte enzyme uricase. These LG9 knockout mice show mild hyperuricemia (120 μmol/l), which can be further increased by the urate precursor inosine. Here, we explored the role of progressive hyperuricemia on the cardiovascular function. Arterial blood pressure and heart rate were periodically measured by telemetry over 6 months in LG9 knockout mice supplemented with incremental amounts of inosine in a normal chow diet. This long-term inosine treatment elicited a progressive increase in uricemia up to 300 μmol/l; however, it did not modify heart rate or mean arterial blood pressure in LG9 knockout compared with control mice. Inosine treatment did not alter cardiac morphology or function measured by ultrasound echocardiography. However, it did induce mild renal dysfunction as revealed by higher plasma creatinine levels, lower glomerular filtration rate, and histological signs of chronic inflammation and fibrosis. Thus, in LG9 knockout mice, inosine-induced hyperuricemia was not associated with hypertension despite partial renal deficiency. This does not support a direct role of urate in the control of blood pressure.
Resumo:
(13)C magnetic resonance spectroscopy (MRS) combined with the administration of (13)C labeled substrates uniquely allows to measure metabolic fluxes in vivo in the brain of humans and rats. The extension to mouse models may provide exclusive prospect for the investigation of models of human diseases. In the present study, the short-echo-time (TE) full-sensitivity (1)H-[(13)C] MRS sequence combined with high magnetic field (14.1 T) and infusion of [U-(13)C6] glucose was used to enhance the experimental sensitivity in vivo in the mouse brain and the (13)C turnover curves of glutamate C4, glutamine C4, glutamate+glutamine C3, aspartate C2, lactate C3, alanine C3, γ-aminobutyric acid C2, C3 and C4 were obtained. A one-compartment model was used to fit (13)C turnover curves and resulted in values of metabolic fluxes including the tricarboxylic acid (TCA) cycle flux VTCA (1.05 ± 0.04 μmol/g per minute), the exchange flux between 2-oxoglutarate and glutamate Vx (0.48 ± 0.02 μmol/g per minute), the glutamate-glutamine exchange rate V(gln) (0.20 ± 0.02 μmol/g per minute), the pyruvate dilution factor K(dil) (0.82 ± 0.01), and the ratio for the lactate conversion rate and the alanine conversion rate V(Lac)/V(Ala) (10 ± 2). This study opens the prospect of studying transgenic mouse models of brain pathologies.
Resumo:
Evolutionary developmental biology has grown historically from the capacity to relate patterns of evolution in anatomy to patterns of evolution of expression of specific genes, whether between very distantly related species, or very closely related species or populations. Scaling up such studies by taking advantage of modern transcriptomics brings promising improvements, allowing us to estimate the overall impact and molecular mechanisms of convergence, constraint or innovation in anatomy and development. But it also presents major challenges, including the computational definitions of anatomical homology and of organ function, the criteria for the comparison of developmental stages, the annotation of transcriptomics data to proper anatomical and developmental terms, and the statistical methods to compare transcriptomic data between species to highlight significant conservation or changes. In this article, we review these challenges, and the ongoing efforts to address them, which are emerging from bioinformatics work on ontologies, evolutionary statistics, and data curation, with a focus on their implementation in the context of the development of our database Bgee (http://bgee.org). J. Exp. Zool. (Mol. Dev. Evol.) 324B: 372-382, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Objective: Imipenem is a broad spectrum antibiotic used to treat severe infections in critically ill patients. Imipenem pharmacokinetics (PK) was evaluated in a cohort of neonates treated in the Neonatal Intensive Care Unit of the Lausanne University Hospital. The objective of our study was to identify key demographic and clinical factors influencing imipenem exposure in this population. Method: PK data from neonates and infants with at least one imipenem concentration measured between 2002 and 2013 were analyzed applying population PK modeling methods. Measurement of plasma concentrations were performed upon the decision of the physician within the frame of a therapeutic drug monitoring (TDM) programme. Effects of demographic (sex, body weight, gestational age, postnatal age) and clinical factors (serum creatinine as a measure of kidney function; co-administration of furosemide, spironolactone, hydrochlorothiazide, vancomycin, metronidazole and erythromycin) on imipenem PK were explored. Model-based simulations were performed (with a median creatinine value of 46 μmol/l) to compare various dosing regimens with respect to their ability to maintain drug levels above predefined minimum inhibitory concentrations (MIC) for at least 40 % of the dosing interval. Results: A total of 144 plasma samples was collected in 68 neonates and infants, predominantly preterm newborns, with median gestational age of 27 weeks (24 - 41 weeks) and postnatal age of 21 days (2 - 153 days). A two-compartment model best characterized imipenem disposition. Actual body weight exhibited the greatest impact on PK parameters, followed by age (gestational age and postnatal age) and serum creatinine on clearance. They explain 19%, 9%, 14% and 9% of the interindividual variability in clearance respectively. Model-based simulations suggested that 15 mg/kg every 12 hours maintain drug concentrations over a MIC of 2 mg/l for at least 40% of the dosing interval during the first days of life, whereas neonates older than 14 days of life required a dose of 20 mg/kg every 12 hours. Conclusion: Dosing strategies based on body weight and post-natal age are recommended for imipenem in all critically ill neonates and infants. Most current guidelines seem adequate for newborns and TDM should be restricted to some particular clinical situations.