123 resultados para Generalized Linear-models
Resumo:
Defense mechanisms as a central notion of psychoanalysis have inspired various levels of interest in research in psychotherapy and psychopathology. Defense specificities have only recently been investigated systematically with regard to several clinical diagnoses, such as affective and personality disorders. For the present study, 30 inpatients diagnosed with Bipolar Affective Disorder I (BD) were interviewed. An observer-rater method, the Defense Mechanisms Rating Scales (DMRS), applied to session-transcripts, of assessment of defenses was used. A matched, nonclinical control group was introduced. Defense specificities in BD encompass a set of 5 immature defenses, of which omnipotence is linked with symptom level. The level of the therapeutic alliance is predicted by mature defenses. These results are discussed with regard to the psychological vulnerability of BD, and treatment implications for psychodynamic psychotherapy with such challenging patients are evoked.
Resumo:
PAH (N-(4-aminobenzoyl)glycin) clearance measurements have been used for 50 years in clinical research for the determination of renal plasma flow. The quantitation of PAH in plasma or urine is generally performed by colorimetric method after diazotation reaction but the measurements must be corrected for the unspecific residual response observed in blank plasma. We have developed a HPLC method to specifically determine PAH and its metabolite NAc-PAH using a gradient elution ion-pair reversed-phase chromatography with UV detection at 273 and 265 nm, respectively. The separations were performed at room temperature on a ChromCart (125 mmx4 mm I.D.) Nucleosil 100-5 microm C18AB cartridge column, using a gradient elution of MeOH-buffer pH 3.9 1:99-->15:85 over 15 min. The pH 3.9 buffered aqueous solution consisted in a mixture of 375 ml sodium citrate-citric acid solution (21.01 g citric acid and 8.0 g NaOH per liter), added up with 2.7 ml H3PO4 85%, 1.0 g of sodium heptanesulfonate and completed ad 1000 ml with ultrapure water. The N-acetyltransferase activity does not seem to notably affect PAH clearances, although NAc-PAH represents 10.2+/-2.7% of PAH excreted unchanged in 12 healthy subjects. The performance of the HPLC and the colorimetric method have been compared using urine and plasma samples collected from healthy volunteers. Good correlations (r=0.94 and 0.97, for plasma and urine, respectively) are found between the results obtained with both techniques. However, the colorimetric method gives higher concentrations of PAH in urine and lower concentrations in plasma than those determined by HPLC. Hence, both renal (ClR) and systemic (Cls) clearances are systematically higher (35.1 and 17.8%, respectively) with the colorimetric method. The fraction of PAH excreted by the kidney ClR/ClS calculated from HPLC data (n=143) is, as expected, always <1 (mean=0.73+/-0.11), whereas the colorimetric method gives a mean extraction ratio of 0.87+/-0.13 implying some unphysiological values (>1). In conclusion, HPLC not only enables the simultaneous quantitation of PAH and NAc-PAH, but may also provide more accurate and precise PAH clearance measurements.
Resumo:
PURPOSE: Incisional hernia (IH) is one of the most frequent postoperative complications. Of all patients undergoing IH repair, a vast amount have a hernia which can be defined as a large incisional hernia (LIH). The aim of this study is to identify the preferred technique for LIH repair. METHODS: A systematic review of the literature was performed and studies describing patients with IH with a diameter of 10 cm or a surface of 100 cm2 or more were included. Recurrence hazards per year were calculated for all techniques using a generalized linear model. RESULTS: Fifty-five articles were included, containing 3,945 LIH repairs. Mesh reinforced techniques displayed better recurrence rates and hazards than techniques without mesh reinforcement. Of all the mesh techniques, sublay repair, sandwich technique with sublay mesh and aponeuroplasty with intraperitoneal mesh displayed the best results (recurrence rates of <3.6%, recurrence hazard <0.5% per year). Wound complications were frequent and most often seen after complex LIH repair. CONCLUSIONS: The use of mesh during LIH repair displayed the best recurrence rates and hazards. If possible mesh in sublay position should be used in cases of LIH repair.
Resumo:
OBJECTIVE: To assess the iodine status of Swiss population groups and to evaluate the influence of iodized salt as a vector for iodine fortification. DESIGN: The relationship between 24 h urinary iodine and Na excretions was assessed in the general population after correcting for confounders. Single-day intakes were estimated assuming that 92 % of dietary iodine was excreted in 24 h urine. Usual intake distributions were derived for male and female population groups after adjustment for within-subject variability. The estimated average requirement (EAR) cut-point method was applied as guidance to assess the inadequacy of the iodine supply. SETTING: Public health strategies to reduce the dietary salt intake in the general population may affect its iodine supply. SUBJECTS: The study population (1481 volunteers, aged ≥15 years) was randomly selected from three different linguistic regions of Switzerland. RESULTS: The 24 h urine samples from 1420 participants were determined to be properly collected. Mean iodine intakes obtained for men (n 705) and women (n 715) were 179 (sd 68.1) µg/d and 138 (sd 57.8) µg/d, respectively. Urinary Na and Ca, and BMI were significantly and positively associated with higher iodine intake, as were men and non-smokers. Fifty-four per cent of the total iodine intake originated from iodized salt. The prevalence of inadequate iodine intake as estimated by the EAR cut-point method was 2 % for men and 14 % for women. CONCLUSIONS: The estimated prevalence of inadequate iodine intake was within the optimal target range of 2-3 % for men, but not for women.
Resumo:
BACKGROUND: In most of the emergency departments (ED) in developed countries, a subset of patients visits the ED frequently. Despite their small numbers, these patients are the source of a disproportionally high number of all ED visits, and use a significant proportion of healthcare resources. They place a heavy economic burden on hospital and healthcare systems budgets overall. Several interventions have been carried out to improve the management of these ED frequent users. Case management has been shown in some North American studies to reduce ED utilization and costs. In these studies, cost analyses have been carried out from the hospital perspective without examining the costs induced by healthcare consumed in the community. However, case management might reduce ED visits and costs from the hospital's perspective, but induce substitution effects, and increase health service utilization outside the hospital. This study examined if an interdisciplinary case-management intervention-compared to standard ED care -reduced costs generated by frequent ED users not only from the hospital perspective, but also from the healthcare system perspective-that is, from a broader perspective taking into account the costs of healthcare services used outside the hospital. METHODS: In this randomized controlled trial, 250 adult frequent emergency department users (5 or more visits during the previous 12 months) who visited the ED of the University Hospital of Lausanne, Switzerland, between May 2012 and July 2013 were allocated to one of two groups: case management intervention (CM) or standard ED care (SC), and followed up for 12 months. Depending on the perspective of the analysis, costs were evaluated differently. For the analysis from the hospital's perspective, the true value of resources used to provide services was used as a cost estimate. These data were obtained from the hospital's analytical accounting system. For the analysis from the health-care system perspective, all health-care services consumed by users and charged were used as an estimate of costs. These data were obtained from health insurance providers for a subsample of participants. To allow comparisons in a same time period, individual monthly average costs were calculated. Multivariate linear models including a fixed effect "group" were run using socio-demographic characteristics and health-related variables as controlling variables (age, gender, educational level, citizenship, marital status, somatic and mental health problems, and risk behaviors).
Resumo:
Background: Emergency department frequent users (EDFUs) account for a disproportionally high number of emergency department (ED) visits, contributing to overcrowding and high health-care costs. At the Lausanne University Hospital, EDFUs account for only 4.4% of ED patients, but 12.1% of all ED visits. Our study tested the hypothesis that an interdisciplinary case management intervention red. Methods: In this randomized controlled trial, we allocated adult EDFUs (5 or more visits in the previous 12 months) who visited the ED of the University Hospital of Lausanne, Switzerland between May 2012 and July 2013 either to an intervention (N=125) or a standard emergency care (N=125) group and monitored them for 12 months. Randomization was computer generated and concealed, and patients and research staff were blinded to the allocation. Participants in the intervention group, in addition to standard emergency care, received case management from an interdisciplinary team at baseline, and at 1, 3, and 5 months, in the hospital, in the ambulatory care setting, or at their homes. A generalized, linear, mixed-effects model for count data (Poisson distribution) was applied to compare participants' numbers of visits to the ED during the 12 months (Period 1, P1) preceding recruitment to the numbers of visits during the 12 months monitored (Period 2, P2).
Resumo:
OBJECTIVES: The aim of this study was to investigate pathological mechanisms underlying brain tissue alterations in mild cognitive impairment (MCI) using multi-contrast 3 T magnetic resonance imaging (MRI). METHODS: Forty-two MCI patients and 77 healthy controls (HC) underwent T1/T2* relaxometry as well as Magnetization Transfer (MT) MRI. Between-groups comparisons in MRI metrics were performed using permutation-based tests. Using MRI data, a generalized linear model (GLM) was computed to predict clinical performance and a support-vector machine (SVM) classification was used to classify MCI and HC subjects. RESULTS: Multi-parametric MRI data showed microstructural brain alterations in MCI patients vs HC that might be interpreted as: (i) a broad loss of myelin/cellular proteins and tissue microstructure in the hippocampus (p ≤ 0.01) and global white matter (p < 0.05); and (ii) iron accumulation in the pallidus nucleus (p ≤ 0.05). MRI metrics accurately predicted memory and executive performances in patients (p ≤ 0.005). SVM classification reached an accuracy of 75% to separate MCI and HC, and performed best using both volumes and T1/T2*/MT metrics. CONCLUSION: Multi-contrast MRI appears to be a promising approach to infer pathophysiological mechanisms leading to brain tissue alterations in MCI. Likewise, parametric MRI data provide powerful correlates of cognitive deficits and improve automatic disease classification based on morphometric features.
Resumo:
Molecular evidence suggests that levels of vitamin D are associated with kidney function loss. Still, population-based studies are limited and few have considered the potential confounding effect of baseline kidney function. This study evaluated the association of serum 25-hydroxyvitamin D with change in eGFR, rapid eGFR decline, and incidence of CKD and albuminuria. Baseline (2003-2006) and 5.5-year follow-up data from a Swiss adult general population were used to evaluate the association of serum 25-hydroxyvitamin D with change in eGFR, rapid eGFR decline (annual loss >3 ml/min per 1.73 m(2)), and incidence of CKD and albuminuria. Serum 25-hydroxyvitamin D was measured at baseline using liquid chromatography-tandem mass spectrometry. eGFR and albuminuria were collected at baseline and follow-up. Multivariate linear and logistic regression models were used considering potential confounding factors. Among the 4280 people included in the analysis, the mean±SD annual eGFR change was -0.57±1.78 ml/min per 1.73 m(2), and 287 (6.7%) participants presented rapid eGFR decline. Before adjustment for baseline eGFR, baseline 25-hydroxyvitamin D level was associated with both mean annual eGFR change and risk of rapid eGFR decline, independently of baseline albuminuria. Once adjusted for baseline eGFR, associations were no longer significant. For every 10 ng/ml higher baseline 25-hydroxyvitamin D, the adjusted mean annual eGFR change was -0.005 ml/min per 1.73 m(2) (95% confidence interval, -0.063 to 0.053; P=0.87) and the risk of rapid eGFR decline was null (odds ratio, 0.93; 95% confidence interval, 0.79 to 1.08; P=0.33). Baseline 25-hydroxyvitamin D level was not associated with incidence of CKD or albuminuria. The association of 25-hydroxyvitamin D with eGFR decline is confounded by baseline eGFR. Sufficient 25-hydroxyvitamin D levels do not seem to protect from eGFR decline independently from baseline eGFR.
Resumo:
Background: In most of the emergency departments (ED) in developed countries, a subset of patients visits the ED frequently. Despite their small numbers, these patients are the source of a disproportionally high number of all ED visits, and use a significant proportion of healthcare resources. They place a heavy economic burden on hospital and healthcare system budgets overall. In order to improve the management of these patients, the University hospital of Lausanne, Switzerland implemented a case management intervention (CM) between May 2012 and July 2013. In this randomized controlled trial, 250 frequent ED users (visits>5 during previous 12 months) were allocated to either the CM group or the standard ED care (SC) group and followed up for 12 months. The first result of the CM was to reduce significantly the ED visits. The present study examined whether the CM intervention also reduced the costs generated by the ED frequent users not only from the hospital perspective, but also from the healthcare system perspective. Methods: Cost data were obtained from the hospital's analytical accounting system and from health insurances. Multivariate linear models including a fixed effect "group" and socio-demographic characteristics and health-related variables were run.
Resumo:
Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13(°) , respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1(°) for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI.
Resumo:
Already in ancient Greece, Hippocrates postulated that disease showed a seasonal pattern characterised by excess winter mortality. Since then, several studies have confirmed this finding, and it was generally accepted that the increase in winter mortality was mostly due to respiratory infections and seasonal influenza. More recently, it was shown that cardiovascular disease (CVD) mortality also displayed such seasonality, and that the magnitude of the seasonal effect increased from the poles to the equator. The recent study by Yang et al assessed CVD mortality attributable to ambient temperature using daily data from 15 cities in China for years 2007-2013, including nearly two million CVD deaths. A high temperature variability between and within cities can be observed (figure 1). They used sophisticated statistical methodology to account for the complex temperature-mortality relationship; first, distributed lag non-linear models combined with quasi-Poisson regression to obtain city-specific estimates, taking into account temperature, relative humidity and atmospheric pressure; then, a meta-analysis to obtain the pooled estimates. The results confirm the winter excess mortality as reported by the Eurowinter3 and other4 groups, but they show that the magnitude of ambient temperature.
Resumo:
BACKGROUND & AIMS: Protein and energy requirements in critically ill children are currently based on insufficient data. Moreover, longitudinal measurements of both total urinary nitrogen (TUN) and resting energy expenditure (REE) are lacking. The aim of this study was to investigate how much protein and energy are needed to equilibrate nitrogen and energy balances in ventilated critically ill children on the basis of daily measurements of TUN, REE and protein and energy intakes. Comparisons were made with the guidelines of the American Society for Parenteral and Enteral Nutrition and the Dietary Reference Intakes. METHODS: Children with an expected duration of mechanical ventilation ≥72 h were prospectively recruited. TUN was measured by chemiluminescence, and REE was measured by indirect calorimetry. Generalised linear models for longitudinal data were used to study the relation between protein intake and nitrogen balance and to calculate the minimum intake of protein needed to achieve nitrogen equilibrium. A similar approach was used for energy. Results were compared to the recommended values. RESULTS: Based on 402 measurements performed in 74 children (median age: 21 months), the mean TUN was high at 0.20 (95% CI: 0.20, 0.22) g/kg/d and the REE was 55 (95% CI: 54, 57) kcal/kg/d. Nitrogen and energy balances were achieved with 1.5 (95% CI: 1.4, 1.6) g/kg/d of protein and 58 (95% CI: 53, 63) kcal/kg/d for the entire group, but there were differences among children of different ages. Children required more protein and less energy than the Dietary Reference Intakes. CONCLUSIONS: In critically ill children, TUN was elevated and REE was reduced during the entire period of mechanical ventilation. Minimum intakes of 1.5 g/kg/d of protein and 58 kcal/kg/d can equilibrate nitrogen and energy balances in children up to 4 years old. Older children require more protein.
Resumo:
Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv) responses to modified rebreathing at sea level (SL), upon ascent (ALT1) and following 16 days of acclimatization (ALT16) to 5260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95 vs. 129%, SL vs. ALT1, 95% confidence intervals (CI) [77, 112], [111, 145], respectively, P = 0.024) and the slope of the sigmoid response (4.5 vs. 7.5%/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P = 0.026) to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177, 95% CI [139, 215], P < 0.001; slope: 10.3%/mmHg, 95% CI [8.2, 12.5], P = 0.003) compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P = 0.982), while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P = 0.001 vs. SL), indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2) following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude.
Resumo:
INTRODUCTION: Attaining an accurate diagnosis in the acute phase for severely brain-damaged patients presenting Disorders of Consciousness (DOC) is crucial for prognostic validity; such a diagnosis determines further medical management, in terms of therapeutic choices and end-of-life decisions. However, DOC evaluation based on validated scales, such as the Revised Coma Recovery Scale (CRS-R), can lead to an underestimation of consciousness and to frequent misdiagnoses particularly in cases of cognitive motor dissociation due to other aetiologies. The purpose of this study is to determine the clinical signs that lead to a more accurate consciousness assessment allowing more reliable outcome prediction. METHODS: From the Unit of Acute Neurorehabilitation (University Hospital, Lausanne, Switzerland) between 2011 and 2014, we enrolled 33 DOC patients with a DOC diagnosis according to the CRS-R that had been established within 28 days of brain damage. The first CRS-R assessment established the initial diagnosis of Unresponsive Wakefulness Syndrome (UWS) in 20 patients and a Minimally Consciousness State (MCS) in the remaining13 patients. We clinically evaluated the patients over time using the CRS-R scale and concurrently from the beginning with complementary clinical items of a new observational Motor Behaviour Tool (MBT). Primary endpoint was outcome at unit discharge distinguishing two main classes of patients (DOC patients having emerged from DOC and those remaining in DOC) and 6 subclasses detailing the outcome of UWS and MCS patients, respectively. Based on CRS-R and MBT scores assessed separately and jointly, statistical testing was performed in the acute phase using a non-parametric Mann-Whitney U test; longitudinal CRS-R data were modelled with a Generalized Linear Model. RESULTS: Fifty-five per cent of the UWS patients and 77% of the MCS patients had emerged from DOC. First, statistical prediction of the first CRS-R scores did not permit outcome differentiation between classes; longitudinal regression modelling of the CRS-R data identified distinct outcome evolution, but not earlier than 19 days. Second, the MBT yielded a significant outcome predictability in the acute phase (p<0.02, sensitivity>0.81). Third, a statistical comparison of the CRS-R subscales weighted by MBT became significantly predictive for DOC outcome (p<0.02). DISCUSSION: The association of MBT and CRS-R scoring improves significantly the evaluation of consciousness and the predictability of outcome in the acute phase. Subtle motor behaviour assessment provides accurate insight into the amount and the content of consciousness even in the case of cognitive motor dissociation.
Resumo:
As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.