305 resultados para Factor Mobility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cigarette smoking is a major risk factor for cardiovascular disease (CVD) and the leading avoidable cause of death worldwide. Exposure to secondhand smoke (SHS) increases the risk of CVD among non-smokers. Smoking cessation benefits all smokers, regardless of age or amount smoked. The excess risk of CVD is rapidly reversible, and stopping smoking after a myocardial infarction reduces an individual's risk of CVD mortality by 36% over 2 years. Smoking cessation is a key component of primary and secondary CVD prevention strategies, but tobacco use often receives less attention from cardiologists than other risk factors, despite the availability of proven treatments that improve smoking cessation rates. Both psychosocial counselling and pharmacotherapy are effective methods to help smokers quit, but they are most effective when used together. The first-line medications licensed to aid smoking cessation, nicotine replacement therapy, bupropion and varenicline, are effective in and appropriate for patients with CVD. An evidence-based approach for physicians is to routinely ask all patients about smoking status and SHS exposure, advise all smokers to quit and all patients to adopt smoke-free policies for their home and car, and offer all smokers in the office or hospital brief counselling, smoking cessation pharmacotherapy, and referral to local programmes where psychosocial support can be sustained in person or by telephone. Like other chronic diseases, tobacco use requires a long-term management strategy. It deserves to be managed as intensively as other CVD risk factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Sulfate and phosphate are both vital macronutrients required for plant growth and development. Despite evidence for interaction between sulfate and phosphate homeostasis, no transcriptional factor has yet been identified in higher plants that affects, at the gene expression and physiological levels, the response to both elements. This work was aimed at examining whether PHR1, a transcription factor previously shown to participate in the regulation of genes involved in phosphate homeostasis, also contributed to the regulation and activity of genes involved in sulfate inter-organ transport. Results: Among the genes implicated in sulfate transport in Arabidopsis thaliana, SULTR1;3 and SULTR3;4 showed up-regulation of transcripts in plants grown under phosphate-deficient conditions. The promoter of SULTR1;3 contains a motif that is potentially recognizable by PHR1. Using the phr1 mutant, we showed that SULTR1;3 up regulation following phosphate deficiency was dependent on PHR1. Furthermore, transcript up regulation was found in phosphate-deficient shoots of the phr1 mutant for SULTR2;1 and SULTR3;4, indicating that PHR1 played both a positive and negative role on the expression of genes encoding sulfate transporters. Importantly, both phr1 and sultr1;3 mutants displayed a reduction in their sulfate shoot-to-root transfer capacity compared to wild-type plants under phosphate-deficient conditions. Conclusions: This study reveals that PHR1 plays an important role in sulfate inter-organ transport, in particular on the regulation of the SULTR1;3 gene and its impact on shoot-to-root sulfate transport in phosphate-deficient plants. PHR1 thus contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency. Such a function is also conserved in Chlamydomonas reinhardtii via the PHR1 ortholog PSR1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus Newman with an insertion mutation in clfB, the gene encoding clumping factor B, only marginally decreased infection rate (P>0.05) in rats with experimental endocarditis. In contrast, clfB complementation on a multicopy plasmid significantly increased infectivity (P<0.05) over the deleted mutants. Although clfB could affect endovascular infection, its importance in experimental endocarditis was limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES/HYPOTHESIS: Facial nerve regeneration is limited in some clinical situations: in long grafts, by aged patients, and when the delay between nerve lesion and repair is prolonged. This deficient regeneration is due to the limited number of regenerating nerve fibers, their immaturity and the unresponsiveness of Schwann cells after a long period of denervation. This study proposes to apply glial cell line-derived neurotrophic factor (GDNF) on facial nerve grafts via nerve guidance channels to improve the regeneration. METHODS: Two situations were evaluated: immediate and delayed grafts (repair 7 months after the lesion). Each group contained three subgroups: a) graft without channel, b) graft with a channel without neurotrophic factor; and c) graft with a GDNF-releasing channel. A functional analysis was performed with clinical observation of facial nerve function, and nerve conduction study at 6 weeks. Histological analysis was performed with the count of number of myelinated fibers within the graft, and distally to the graft. Central evaluation was assessed with Fluoro-Ruby retrograde labeling and Nissl staining. RESULTS: This study showed that GDNF allowed an increase in the number and the maturation of nerve fibers, as well as the number of retrogradely labeled neurons in delayed anastomoses. On the contrary, after immediate repair, the regenerated nerves in the presence of GDNF showed inferior results compared to the other groups. CONCLUSIONS: GDNF is a potent neurotrophic factor to improve facial nerve regeneration in grafts performed several months after the nerve lesion. However, GDNF should not be used for immediate repair, as it possibly inhibits the nerve regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycosyl-inositolphospholipid (GPL) anchoring structures are incorporated into GPL-anchored proteins immediately posttranslationally in the rough endoplasmic reticulum, but the biochemical and cellular constituents involved in this "glypiation" process are unknown. To establish whether glypiation could be achieved in vitro, mRNAs generated by transcription of cDNAs encoding two GPL-anchored proteins, murine Thy-1 antigen and human decay-accelerating factor (DAF), and a conventionally anchored control protein, polymeric-immunoglobulin receptor (IgR), were translated in a rabbit reticulocyte lysate. Upon addition of dog pancreatic rough microsomes, nascent polypeptides generated from the three mRNAs translocated into vesicles. Dispersal of the vesicles with Triton X-114 detergent and incubation of the hydrophobic phase with phosphatidylinositol-specific phospholipases C and D, enzymes specific for GPL-anchor structures, released Thy-1 and DAF but not IgR protein into the aqueous phase. The selective incorporation of phospholipase-sensitive anchoring moieties into Thy-1 and DAF but not IgR translation products during in vitro translocation indicates that rough microsomes are able to support and regulate glypiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trimethyltin (TMT) is a neurotoxicant known to induce early microglial activation. The present study was undertaken to investigate the role played by these microglial cells in the TMT-induced neurotoxicity. The effects of TMT were investigated in monolayer cultures of isolated microglia or in neuron-enriched cultures and in neuron-microglia and astrocyte-microglia cocultures. The end points used were morphological criteria; evaluation of cell death and cell proliferation; and measurements of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) release in culture supernatant. The results showed that, in cultures of microglia, TMT (10(-6) M) caused, after a 5-day treatment, an increased release of TNF-alpha, without affecting microglial shape or cell viability. When microglia were cocultured with astrocytes, TNF-alpha release was decreased to undetectable levels. In contrast, in neuron-microglia cocultures, TNF-alpha levels were found to increase at lower concentrations of TMT (i.e., 10(-8) M). Moreover, at 10(-6) M of TMT, microglia displayed further morphological activation, as suggested by process retraction and by decrease in cell size. No morphological activation was observed in cultures of isolated microglial cells and in astrocyte-microglia cocultures. With regard to neurons, 10(-6) M of TMT induced about 30% of cell death, when applied to neuron-enriched cultures, whereas close to 100% of neuronal death was observed in neuron-microglia cocultures. In conclusion, whereas astrocytes may rather dampen the microglial activation by decreasing microglial TNF-alpha production, neuronal-microglial interactions lead to enhanced microglial activation. This microglial activation, in turn, exacerbates the neurotoxic effects of TMT. TNF-alpha may play a major role in such cell-cell communications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fas ligand (FasL) exerts potent proapoptotic and proinflammatory actions on epidermal keratinocytes and has been implicated in the pathogenesis of eczema, toxic epidermal necrolysis, and drug-induced skin eruptions. We used reconstructed human epidermis to investigate the mechanisms of FasL-induced inflammatory responses and their relationships with FasL-triggered caspase activity. Caspase activity was a potent antagonist of the pro-inflammatory gene expression triggered by FasL prior to the onset of cell death. Furthermore, we found that FasL-stimulated autocrine production of epidermal growth factor receptor (EGFR) ligands, and the subsequent activation of EGFR and ERK1 and ERK2 mitogen-activated protein kinases, were obligatory extracellular steps for the FasL-induced expression of a subset of inflammatory mediators, including CXCL8/interleukin (IL)-8, ICAM-1, IL-1alpha, IL-1beta, CCL20/MIP-3alpha, and thymic stromal lymphopoietin. These results expand the known physiological role of EGFR and its ligands from promoting keratinocyte mitogenesis and survival to mediating FasL-induced epidermal inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroimaging with diffusion-weighted imaging is routinely used for clinical diagnosis/prognosis. Its quantitative parameter, the apparent diffusion coefficient (ADC), is thought to reflect water mobility in brain tissues. After injury, reduced ADC values are thought to be secondary to decreases in the extracellular space caused by cell swelling. However, the physiological mechanisms associated with such changes remain uncertain. Aquaporins (AQPs) facilitate water diffusion through the plasma membrane and provide a unique opportunity to examine the molecular mechanisms underlying water mobility. Because of this critical role and the recognition that brain AQP4 is distributed within astrocytic cell membranes, we hypothesized that AQP4 contributes to the regulation of water diffusion and variations in its expression would alter ADC values in normal brain. Using RNA interference in the rodent brain, we acutely knocked down AQP4 expression and observed that a 27% AQP4-specific silencing induced a 50% decrease in ADC values, without modification of tissue histology. Our results demonstrate that ADC values in normal brain are modulated by astrocytic AQP4. These findings have major clinical relevance as they suggest that imaging changes seen in acute neurologic disorders such as stroke and trauma are in part due to changes in tissue AQP4 levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated whether preeclampsia is associated with elevated circulating levels of High mobility group box 1 protein (HMGB-1), a nuclear protein with proinflammatory effects when released extracellularly. We enrolled 48 women, 32 in third trimester pregnancy (16 with, 16 without preeclampsia), and 16 healthy non pregnant. In the peripheral blood of pregnant women, HMGB-1 concentration was assessed serially, before and after delivery. With or without preeclampsia, third trimester pregnancy was associated with elevated levels of HMGB-1. This elevation is exaggerated in preeclampsia. The source of HMGB-1 observed in these conditions is likely to involve tissues other than the placenta itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since Staphylococcus aureus expresses multiple pathogenic factors, studying their individual roles in single-gene-knockout mutants is difficult. To circumvent this problem, S. aureus clumping factor A (clfA) and fibronectin-binding protein A (fnbA) genes were constitutively expressed in poorly pathogenic Lactococcus lactis using the recently described pOri23 vector. The recombinant organisms were tested in vitro for their adherence to immobilized fibrinogen and fibronectin and in vivo for their ability to infect rats with catheter-induced aortic vegetations. In vitro, both clfA and fnbA increased the adherence of lactococci to their specific ligands to a similar extent as the S. aureus gene donor. In vivo, the minimum inoculum size producing endocarditis in > or =80% of the rats (80% infective dose [ID80]) with the parent lactococcus was > or =10(7) CFU. In contrast, clfA-expressing and fnbA-expressing lactococci required only 10(5) CFU to infect the majority of the animals (P < 0.00005). This was comparable to the infectivities of classical endocarditis pathogens such as S. aureus and streptococci (ID80 = 10(4) to 10(5) CFU) in this model. The results confirmed the role of clfA in endovascular infection, but with a much higher degree of confidence than with single-gene-inactivated staphylococci. Moreover, they identified fnbA as a critical virulence factor of equivalent importance. This was in contrast to previous studies that produced controversial results regarding this very determinant. Taken together, the present observations suggest that if antiadhesin therapy were to be developed, at least both of the clfA and fnbA products should be blocked for the therapy to be effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were to assess whether high-mobility group box-1 protein can be determined in biological fluids collected during autopsy and evaluate the diagnostic potential of high-mobility group box-1 protein in identifying sepsis-related deaths. High-mobility group box-1 protein was measured in serum collected during hospitalization as well as in undiluted and diluted postmortem serum and pericardial fluid collected during autopsy in a group of sepsis-related deaths and control cases with noninfectious causes of death. Inclusion criteria consisted of full biological sample availability and postmortem interval not exceeding 6h. The preliminary results indicate that high-mobility group box-1 protein levels markedly increase after death. Concentrations beyond the upper limit of the calibration curve were obtained in undiluted postmortem serum in septic and traumatic control cases. In pericardial fluid, concentrations beyond the upper limit of the calibration curve were found in all cases. These findings suggest that the diagnostic potential of high-mobility group box-1 protein in the postmortem setting is extremely limited due to molecule release into the bloodstream after death, rendering antemortem levels difficult or impossible to estimate even after sample dilution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induces apoptosis and activation of NF-kappaB in cultured cells. In this study, we have demonstrated differential signaling capacities by both receptors using either epitope-tagged soluble TRAIL (sTRAIL) or sTRAIL that was cross-linked with a monoclonal antibody. Interestingly, sTRAIL was sufficient for induction of apoptosis only in cell lines that were killed by agonistic TRAIL-R1- and TRAIL-R2-specific IgG preparations. Moreover, in these cell lines interleukin-6 secretion and NF-kappaB activation were induced by cross-linked or non-cross-linked anti-TRAIL, as well as by both receptor-specific IgGs. However, cross-linking of sTRAIL was required for induction of apoptosis in cell lines that only responded to the agonistic anti-TRAIL-R2-IgG. Interestingly, activation of c-Jun N-terminal kinase (JNK) was only observed in response to either cross-linked sTRAIL or anti-TRAIL-R2-IgG even in cell lines where both receptors were capable of signaling apoptosis and NF-kappaB activation. Taken together, our data suggest that TRAIL-R1 responds to either cross-linked or non-cross-linked sTRAIL which signals NF-kappaB activation and apoptosis, whereas TRAIL-R2 signals NF-kappaB activation, apoptosis, and JNK activation only in response to cross-linked TRAIL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examines the Five-Factor Model (FFM) of personality and locus of control in French-speaking samples in Burkina Faso (N = 470) and Switzerland (Ns = 1,090, 361), using the Revised NEO Personality Inventory (NEO-PI-R) and Levenson's Internality, Powerful others, and Chance (IPC) scales. Alpha reliabilities were consistently lower in Burkina Faso, but the factor structure of the NEO-PI-R was replicated in both cultures. The intended three-factor structure of the IPC could not be replicated, although a two-factor solution was replicable across the two samples. Although scalar equivalence has not been demonstrated, mean level comparisons showed the hypothesized effects for most of the five factors and locus of control; Burkinabè scored higher in Neuroticism than anticipated. Findings from this African sample generally replicate earlier results from Asian and Western cultures, and are consistent with a biologically-based theory of personality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox-based mechanisms play critical roles in the regulation of multiple cellular functions. NF-kappaB, a master regulator of inflammation, is an inducible transcription factor generally considered to be redox-sensitive, but the modes of interactions between oxidant stress and NF-kappaB are incompletely defined. Here, we show that oxidants can either amplify or suppress NF-kappaB activation in vitro by interfering both with positive and negative signals in the NF-kappaB pathway. NF-kappaB activation was evaluated in lung A549 epithelial cells stimulated with tumor necrosis factor alpha (TNFalpha), either alone or in combination with various oxidant species, including hydrogen peroxide or peroxynitrite. Exposure to oxidants after TNFalpha stimulation produced a robust and long lasting hyperactivation of NF-kappaB by preventing resynthesis of the NF-kappaB inhibitor IkappaB, thereby abrogating the major negative feedback loop of NF-kappaB. This effect was related to continuous activation of inhibitor of kappaB kinase (IKK), due to persistent IKK phosphorylation consecutive to oxidant-mediated inactivation of protein phosphatase 2A. In contrast, exposure to oxidants before TNFalpha stimulation impaired IKK phosphorylation and activation, leading to complete prevention of NF-kappaB activation. Comparable effects were obtained when interleukin-1beta was used instead of TNFalpha as the NF-kappaB activator. This study demonstrates that the influence of oxidants on NF-kappaB is entirely context-dependent, and that the final outcome (activation versus inhibition) depends on a balanced inhibition of protein phosphatase 2A and IKK by oxidant species. Our findings provide a new conceptual framework to understand the role of oxidant stress during inflammatory processes.