328 resultados para Beta-adrenoceptor agonists


Relevância:

20.00% 20.00%

Publicador:

Resumo:

GLP-1 protects β-cells against apoptosis by still incompletely understood mechanisms. In a recent study, we searched for novel anti-apoptotic pathways by performing comparative transcriptomic analysis of islets from Gipr-/-;Glp-1r-/- mice, which show increased susceptibility to cytokine-induced apoptosis. We observed a strong reduction in IGF-1R expression in the knockout islets suggesting a link between the gluco-incretin and IGF-1R signaling pathways. Using MIN6 and primary islet cells, we demonstrated that GLP-1 strongly stimulates IGF-1R expression and that activation of the IGF-1R/Akt signaling pathway required active secretion of IGF-2 by the β-cells. We showed that inactivation of the IGF-1 receptor gene in β-cells or preventing its up-regulation by GLP-1, as well as suppressing IGF-2 expression or action, blocked the protective effect of GLP-1 against cytokine-induced apoptosis. Thus, an IGF-2/IGF-1 receptor autocrine loop operates in β-cells and GLP-1 increases its activity by enhancing IGF-1R expression and by stimulating IGF-2 secretion. This mechanism is required for GLP-1 to protect β-cells against apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphogens of the Wnt protein family are the secreted lipoglycoprotein ligands which initiate several pathways heavily involved in the coordination of various developmental stages of organisms in the majority of animal species. Deregulation of these pathways in the adult leads to formation and sustaining of multiple types of cancer. The latter notion is reinforced by the fact that the very discovery of the first Wnt ligand was due to its role as the causative factor of carcinogenic transformation (Nusse and Varmus, 1982). Nowadays our knowledge on Wnt signaling has "moved with the times" and these pathways were identified to be often crucial for tumor formation, its interactions with the microenvironment, and promotion of the metastases (Huang and Du, 2008; Zerlin et al., 2008; Jessen, 2009). Thus the relevance of the pathway as the target for drug development has further increased in the light of modern paradigms of the complex cancer treatments which target also spreading and growth- promoting factors of tumors by specific and highly efficient substances (Pavet et al., 2010). Presently the field of the Wnt-targeting drug research is almost solely dominated by assays based on transcriptional activation induced by the signaling. This approach resulted in development of a number of promising substances (Lee et al., 2011). Despite its effectiveness, the method nevertheless suffers from several drawbacks. Among the major ones is the fact that this approach is prone to identify compounds targeting rather downstream effectors of the pathway, which are indiscriminately used by all the subtypes of the Wnt signaling. Additionally, proteins which are involved in several signaling cascades and not just the Wnt pathway turn out as targets of the new compounds. These issues increase risks of side effects due to off-target interactions and blockade of the pathway in healthy cells. In the present work we put forward a novel biochemical approach for drug development on the Wnt pathway. It targets Frizzleds (Fzs) - a family of 7-transmbembrane proteins which serve as receptors for Wnt ligands. They offer unique properties for the development of highly specific and effective drugs as they control all branches of the Wnt signaling. Recent advances in the understanding of the roles of heterotrimeric G proteins downstream from Fzs (Katanaev et al., 2005; Liu et al., 2005; Jernigan et al., 2010) suggest application of enzymatic properties of these effectors to monitor the receptor-mediated events. We have applied this knowledge in practice and established a specific and efficient method based on utilization of a novel high-throughput format of the GTP-binding assay to follow the activation of Fzs. This type of assay is a robust and well-established technology for the research and screenings on the GPCRs (Harrison and Traynor, 2003). The conventional method of detection involves the radioactively labeled non-hydrolysable GTP analog [35S]GTPyS. Its application in the large-scale screenings is however problematic which promoted development of the novel non-radioactive GTP analog GTP-Eu. The new molecule employs phenomenon of the time-resolved fluorescence to provide sensitivity comparable to the conventional radioactive substance. Initially GTP-Eu was tested only in one of many possible types of GTP-binding assays (Frang et al., 2003). In the present work we expand these limits by demonstrating the general comparability of the novel label with the radioactive method in various types of assays. We provide a biochemical characterization of GTP-Eu interactions with heterotrimeric and small GTPases and a comparative analysis of the behavior of the new label in the assays involving heterotrimeric G protein effectors. These developments in the GTP-binding assay were then applied to monitor G protein activation by the Fz receptors. The data obtained in mammalian cultured cell lines provides for the first time an unambiguous biochemical proof for direct coupling of Fzs with G proteins. The specificity of this interaction has been confirmed by the experiments with the antagonists of Fz and by the pertussis toxin-mediated deactivation. Additionally we have identified the specificity of Wnt3a towards several members of the Fz family and analyzed the properties of human Fz-1 which was found to be the receptor coupled to the Gi/o family of G proteins. Another process playing significant role in the functioning of every GPCR is endocytosis. This phenomenon can also be employed for drug screenings on GPCRs (Bickle, 2010). In the present work we have demonstrated that Drosophila Fz receptors are involved in an unusual for many GPCRs manifestation of the receptor-mediated internalization. Through combination of biochemical approaches and studies on Drosophila as the model organism we have shown that direct interactions of the Fzs and the α-subunit of the heterotrimeric G protein Go with the small GTPase Rab5 regulate internalization of the receptor in early endosomes. We provide data uncovering the decisive role of this self-promoted endocytosis in formation of a proper signaling output in the canonical as well as planar cell polarity (PCP) pathways regulated by Fz. The results of this work thus establish a platform for the high-throughput screening to identify substances active in the cancer-related Wnt pathways. This methodology has been adjusted and applied to provide the important insights in Fz functioning and will be instrumental for further investigations on the Wnt-mediated pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of exendin-(9-39), a described antagonist of the glucagon-like peptide-1 (GLP-1) receptor, was evaluated on the formation of cAMP- and glucose-stimulated insulin secretion (GSIS) by the conditionally immortalized murine betaTC-Tet cells. These cells have a basal intracellular cAMP level that can be increased by GLP-1 with an EC50 of approximately 1 nM and can be decreased dose dependently by exendin-(9-39). This latter effect was receptor dependent, as a beta-cell line not expressing the GLP-1 receptor was not affected by exendin-(9-39). It was also not due to the endogenous production of GLP-1, because this effect was observed in the absence of detectable preproglucagon messenger RNA levels and radioimmunoassayable GLP-1. Importantly, GSIS was shown to be sensitive to this basal level of cAMP, as perifusion of betaTC-Tet cells in the presence of exendin-(9-39) strongly reduced insulin secretion. This reduction of GSIS, however, was observed only with growth-arrested, not proliferating, betaTC-Tet cells; it was also seen with nontransformed mouse beta-cells perifused in similar conditions. These data therefore demonstrated that 1) exendin-(9-39) is an inverse agonist of the murine GLP-1 receptor; 2) the decreased basal cAMP levels induced by this peptide inhibit the secretory response of betaTC-Tet cells and mouse pancreatic islets to glucose; 3) as this effect was observed only with growth-arrested cells, this indicates that the mechanism by which cAMP leads to potentiation of insulin secretion is different in proliferating and growth-arrested cells; and 4) the presence of the GLP-1 receptor, even in the absence of bound peptide, is important for maintaining elevated intracellular cAMP levels and, therefore, the glucose competence of the beta-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In insulin-secreting cells, cytokines activate the c-Jun N-terminal kinase (JNK), which contributes to a cell signaling towards apoptosis. The JNK activation requires the presence of the murine scaffold protein JNK-interacting protein 1 (JIP-1) or human Islet-brain 1(IB1), which organizes MLK3, MKK7 and JNK for proper signaling specificity. Here, we used adenovirus-mediated gene transfer to modulate IB1/JIP-1 cellular content in order to investigate the contribution of IB1/JIP-1 to beta-cell survival. Exposure of the insulin-producing cell line INS-1 or isolated rat pancreatic islets to cytokines (interferon-gamma, tumor necrosis factor-alpha and interleukin-1beta) induced a marked reduction of IB1/JIP-1 content and a concomitant increase in JNK activity and apoptosis rate. This JNK-induced pro-apoptotic program was prevented in INS-1 cells by overproducing IB1/JIP-1 and this effect was associated with inhibition of caspase-3 cleavage. Conversely, reducing IB1/JIP-1 content in INS-1 cells and isolated pancreatic islets induced a robust increase in basal and cytokine-stimulated apoptosis. In heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene, the reduction in IB1/JIP-1 content in happloinsufficient isolated pancreatic islets was associated with an increased JNK activity and basal apoptosis. These data demonstrate that modulation of the IB1-JIP-1 content in beta cells is a crucial regulator of JNK signaling pathway and of cytokine-induced apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The peroxisome proliferator-activated nuclear receptors (PPAR-alpha, PPAR-beta, and PPAR-gamma), which modulate the expression of genes involved in energy homeostasis, cell cycle, and immune function, may play a role in hepatic stellate cell activation. Previous studies focused on the decreased expression of PPAR-gamma in hepatic stellate cell activation but did not investigate the expression and role of the PPAR-alpha and -beta isotypes. The aim of this study was to evaluate the expression of the different PPARs during hepatic stellate cell activation in vitro and in situ and to analyze possible factors that might contribute to their expression. In a second part of the study, the effect of a PPAR-beta agonist on acute liver injury was evaluated. METHODS: The effects of PPAR isotype-specific ligands on hepatic stellate cell transition were evaluated by bromodeoxyuridine incorporation, gel shifts, immunoprecipitation, and use of antisense PPAR-beta RNA-expressing adenoviruses. Tumor necrosis factor alpha-induced PPAR-beta phosphorylation and expression was evaluated by metabolic labeling and by using specific P38 inhibitors. RESULTS: Hepatic stellate cells constitutively express high levels of PPAR-beta, which become further induced during culture activation and in vivo fibrogenesis. No significant expression of PPAR-alpha or -gamma was found. Stimulation of the P38 mitogen-activated protein kinase pathway modulated the expression of PPAR-beta. Transcriptional activation of PPAR-beta by L165041 enhanced hepatic stellate cell proliferation. Treatment of rats with a single bolus of CCl(4) in combination with L165041 further enhanced the expression of fibrotic markers. CONCLUSIONS: PPAR-beta is an important signal-transducing factor contributing to hepatic stellate cell proliferation during acute and chronic liver inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liver of C57BL/6 mice contains a major subset of CD4+8- and CD4-8- T cell receptor (TCR)-alpha/beta+ cells expressing the polymorphic natural killer NK1.1 surface marker. Liver NK1.1+TCR-alpha/beta+ (NK1+ T) cells require interaction with beta2-microglobulin-associated, major histocompatibility complex I-like molecules on hematopoietic cells for their development and have a TCR repertoire that is highly skewed to Vbeta8.2, Vbeta7, and Vbeta2. We show here that congenic C57BL/6.Vbeta(a) mice, which lack Vbeta8- expressing T cells owing to a genomic deletion at the Vbeta locus, maintain normal levels of liver NK1+ T cells owing to a dramatic increase in the proportion of cells expressing Vbeta7 and Vbeta2 (but not other Vbetas). Moreover, in C57BL/6 congenic TCR-V Vbeta3 and -Vbeta8.1 transgenic mice (which in theory should not express other Vbeta, owing to allelic exclusion at the TCR-beta locus), endogenous TCR-Vbeta8.2, Vbeta7, and Vbeta2 (but not other Vbetas) are frequently expressed on liver NK1+T cells but absent on lymph node T cells. Finally, when endogenous V beta expression is prevented in TCR-Vbeta3 and Vbeta8.1 transgenic mice (by introduction of a null allele at the C beta locus), the development of liver NK1+T cells is totally abrogated. Collectively, our data indicate that liver NK1+T cells have a stringent requirement for expression of TCR-Vbeta8.2, Vbeta7, or Vbeta2 for their development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell factor-1 (Tcf-1) is a transcription factor that binds to a sequence motif present in several T cell-specific enhancer elements. In Tcf-1-deficient (Tcf-1-/-) mice, thymocyte development is partially blocked at the transition from the CD4-8+ immature single-positive stage to the CD4+8+ double-positive stage, resulting in a marked decrease of mature peripheral T cells in lymph node and spleen. We report here that the development of most intestinal TCR gamma delta+ cells and liver CD4+ NK1.1+TCR alpha beta+ (NK1+T) cells, which are believed to be of extrathymic origin, is selectively impaired in Tcf-1-/- mice. In contrast, thymic and thymus-derived (splenic) TCR gamma delta+ cells are present in normal numbers in Tcf-1-/- mice, as are other T cell subsets in intestine and liver. Collectively, our data suggest that Tcf-1 is differentially required for the development of some extrathymic T cell subsets, including intestinal TCR gamma delta+ cells and liver CD4+ NK1+T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-dependent calcium channel (Ca(v)) pores are modulated by cytosolic beta subunits. Four beta-subunit genes and their splice variants offer a wide structural array for tissue- or disease-specific biophysical gating phenotypes. For instance, the length of the N terminus of beta(2) subunits has major effects on activation and inactivation rates. We tested whether a similar mechanism principally operates in a beta(1) subunit. Wild-type beta(1a) subunit (N terminus length 60 aa) and its newly generated N-terminal deletion mutants (51, 27 and 18 aa) were examined within recombinant L-type calcium channel complexes (Ca(v)1.2 and alpha(2)delta2) in HEK293 cells at the whole-cell and single-channel level. Whole-cell currents were enhanced by co-transfection of the full-length beta(1a) subunit and by all truncated constructs. Voltage dependence of steady-state activation and inactivation did not depend on N terminus length, but inactivation rate was diminished by N terminus truncation. This was confirmed at the single-channel level, using ensemble average currents. Additionally, gating properties were estimated by Markov modeling. In confirmation of the descriptive analysis, inactivation rate, but none of the other transition rates, was reduced by shortening of the beta(1a) subunit N terminus. Our study shows that the length-dependent mechanism of modulating inactivation kinetics of beta(2) calcium channel subunits can be confirmed and extended to the beta(1) calcium channel subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ischemic acute renal failure is characterized by damages to the proximal straight tubule in the outer medulla. Lesions include loss of polarity, shedding into the tubule lumen, and eventually necrotic or apoptotic death of epithelial cells. It was recently shown that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) increases keratinocyte survival after an inflammatory reaction. Therefore, whether PPARbeta/delta could contribute also to the control of tubular epithelium death after renal ischemia/reperfusion was tested. It was found that PPARbeta/delta+/- and PPARbeta/delta-/- mutant mice exhibited much greater kidney dysfunction and injury than wild-type counterparts after a 30-min renal ischemia followed by a 36-h reperfusion. Conversely, wild-type mice that were given the specific PPARbeta/delta ligand L-165041 before renal ischemia were completely protected against renal dysfunction, as indicated by the lack of rise in serum creatinine and fractional excretion of Na+. This protective effect was accompanied by a significant reduction in medullary necrosis, apoptosis, and inflammation. On the basis of in vitro studies, PPARbeta/delta ligands seem to exert their role by activating the antiapoptotic Akt signaling pathway and, unexpectedly, by increasing the spreading of tubular epithelial cells, thus limiting potentially their shedding and anoikis. These results point to PPARbeta/delta as a remarkable new target for preconditioning strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprin beta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprin beta. In chicken tenascin-C, meprin beta processed all three major splicing variants by removal of 10 kDa N-terminal and 38 kDa C-terminal peptides, leaving a large central part of subunits intact. IN similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15 kDa) and two C-terminal fragments (40 and 55 kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprin beta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprin beta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprin beta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprin beta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprin beta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the performances of a double focusing magnetic beta spectrometer. The energy resolution was measured using conversion peaks of Cs-137 and Ba-133 at 0.73% for 624 keV, and 1.33% for 124 keV. The counting efficiency as a function of the energy was estimated using a P-32 source and was used to correct the measured spectra of Cs-137. The result was compared with the theoretical spectrum and we found a good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The function of interleukin-3 (or multi-CSF) in the hemopoietic system has been studied in great detail. Although its growth promoting activity on brain microglial cells has been confirmed both in vitro and in vivo, its presence in the brain and even in cultured brain cells has repeatedly been questioned. We have shown recently that isolated rat microglia express mRNA(IL-3) and synthesize IL-3 polypeptide. It is shown here by use of the PCR method, that mRNA(IL-3) is found also in C6 glioblastoma, in rat aggregate cultures, and in newborn and adult rat brain. Quantitation of amplified cDNA(IL-3) was achieved by non-competitive RT-PCR using an elongated internal standard. IL-3 messenger RNA was almost undetectable in vivo and low in (serum-free) aggregate cultures. In isolated microglia, mRNA(IL-3) was increased upon treatment with LPS, PHA, with the cytokines IL-1 or TNF-alpha, with retinoic acid, dbcAMP or the phorbol ester TPA. Effects of LPS were inhibited by dexamethasone, while the glucocorticoid by itself had no effect on basal IL-3 expression. LPS increased mRNA(IL-3) in a concentration-dependent manner beginning with 10 pg/ml and reaching plateau levels at 10 ng/ml. LPS also increased mRNAs of TNF-alpha and TNF-beta. TNF-alpha mRNA was already detectable in untreated microglia and LPS-increased levels were sustained for a few days. In contrast, TNF-beta mRNA was observed only between 4 and 16 h of LPS incubation. It was absent in LPS-free microglia, and after 24 h of LPS-treatment or later.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat 1 fibroblasts transfected to express either the wild-type hamster alpha 1B-adrenergic receptor or a constitutively active mutant (CAM) form of this receptor resulting from the alteration of amino acid residues 288-294 to encode the equivalent region of the human beta 2-adrenergic receptor were examined. The basal level of inositol phosphate generation in cells expressing the CAM alpha 1B-adrenergic receptor was greater than for the wild-type receptor, The addition of maximally effective concentrations of phenylephrine or noradrenaline resulted in substantially greater levels of inositol phosphate generation by the CAM alpha 1B-adrenergic receptor, although this receptor was expressed at lower steady-state levels than the wild-type receptor. The potency of both phenylephrine and noradrenaline to stimulate inositol phosphate production was approx. 200-fold greater at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. In contrast, endothelin 1, acting at the endogenously expressed endothelin ETA, receptor, displayed similar potency and maximal effects in the two cell lines. The sustained presence of phenylephrine resulted in down-regulation of the alpha subunits of the phosphoinositidase C-linked, pertussis toxin-insensitive, G-proteins G9 and G11 in cells expressing either the wild-type or the CAM alpha 1B-adrenergic receptor. The degree of down-regulation achieved was substantially greater in cells expressing the CAM alpha 1B-adrenergic receptor at all concentrations of the agonist. However, in this assay phenylephrine displayed only a slightly greater potency at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. There were no detectable differences in the basal rate of G9 alpha/G11 alpha degradation between cells expressing the wild-type or the CAMalpha 1B-adrenergic receptor. In both cell lines the addition of phenylephrine substantially increased the rate of degradation of these G-proteins, with a greater effect at the CAM alpha 1B-adrenergic receptor. The enhanced capacity of agonist both to stimulate second-messenger production at the CAM alpha 1B-adrenergic receptor and to regulate cellular levels of its associated G-proteins by stimulating their rate of degradation is indicative of an enhanced stoichiometry of coupling of this form of the receptor to G9 and G11.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of peroxisome proliferator activator receptor (PPAR)β/δ in the pathogenesis of Alzheimer's disease has only recently been explored through the use of PPARβ/δ agonists. Here we evaluated the effects of PPARβ/δ deficiency on the amyloidogenic pathway and tau hyperphosphorylation. PPARβ/δ-null mice showed cognitive impairment in the object recognition task, accompanied by enhanced DNA-binding activity of NF-κB in the cortex and increased expression of IL-6. In addition, two NF-κB-target genes involved in β-amyloid (Aβ) synthesis and deposition, the β site APP cleaving enzyme 1 (Bace1) and the receptor for advanced glycation endproducts (Rage), respectively, increased in PPARβ/δ-null mice compared to wild type animals. The protein levels of glial fibrillary acidic protein (GFAP) increased in the cortex of PPARβ/δ-null mice, which would suggest the presence of astrogliosis. Finally, tau hyperphosphorylation at Ser199 and enhanced levels of PHF-tau were associated with increased levels of the tau kinases CDK5 and phospho-ERK1/2 in the cortex of PPARβ/δ(-/-) mice. Collectively, our findings indicate that PPARβ/δ deficiency results in cognitive impairment associated with enhanced inflammation, astrogliosis and tau hyperphosphorylation in the cortex.