155 resultados para Aldosterone hypersecretion
Resumo:
Aldosterone stimulation of the mineralocorticoid receptor (MR) is involved in numerous physiological responses, including Na+ homeostasis, blood pressure control, and heart failure. Aldosterone binding to MR promotes different post-translational modifications that regulate MR nuclear translocation, gene expression, and finally receptor degradation. Here, we show that aldosterone stimulates rapid phosphorylation of MR via ERK1/2 in a dose-dependent manner (from 0.1 to 10 nM) in renal epithelial cells. This phosphorylation induces an increase of MR apparent molecular weight, with a maximal upward shift of 30 kDa. Strikingly, these modifications are critical for the regulation of the MR ubiquitylation state. Indeed, we find that MR is monoubiquitylated in its basal state, and this status is sustained by the tumor suppressor gene 101 (Tsg101). Phosphorylation leads to disruption of MR/Tsg101 association and monoubiquitin removal. These events prompt polyubiquitin-dependent destabilization of MR and degradation. Preventing MR phosphorylation by ERK1/2 inhibition or mutation of target serines affects the sequential mechanisms of MR ubiquitylation and inhibits the aldosterone-mediated degradation. Our data provide a novel model of negative feedback of aldosterone signaling, involving sequential phosphorylation, monoubiquitin removal and subsequent polyubiquitylation/degradation of MR.
Resumo:
The epithelial sodium channel (ENaC) is critical for sodium and BP homeostasis. ENaC is regulated by Nedd4-2-mediated ubiquitylation, which leads to its internalization; this process can be reversed by deubiquitylation, which is regulated by the aldosterone-induced enzyme Usp2-45. In a second regulatory pathway, ENaC can be activated by luminal serine protease-mediated cleavage of its extracellular loops. Whether these two regulatory processes interact, however, is unknown. Here, in HEK293 cells stably transfected with ENaC, Usp2-45 interacted with ENaC, leading to deubiquitylation of the channel and stimulation of ENaC activity >20-fold. This was accompanied by a modest increase in cell surface expression of ENaC and by proteolytic cleavage of alphaENaC and gammaENaC at their extracellular loops. When endocytosis was inhibited with dominant negative dynamin (DynK44R), channel density and gammaENaC cleavage were increased, but alphaENaC cleavage and ENaC activity were not augmented. When Usp2-45 was coexpressed with DynK44R, both alphaENaC cleavage and activity were recovered. In summary, these data suggest that Usp2-45 deubiquitylation of ENaC enhances the proteolytic activation of both alphaENaC and gammaENaC, possibly by inducing a conformational change and by interfering with endocytosis, respectively
Resumo:
In cortical collecting ducts (CCDs) perfused in vitro, inhibiting the epithelial Na(+) channel (ENaC) reduces Cl(-) absorption. Since ENaC does not transport Cl(-), the purpose of this study was to determine how ENaC modulates Cl(-) absorption. Thus, Cl(-) absorption was measured in CCDs perfused in vitro that were taken from mice given aldosterone for 7 days. In wild-type mice, we observed no effect of luminal hydrochlorothiazide on either Cl(-) absorption or transepithelial voltage (V(T)). However, application of an ENaC inhibitor [benzamil (3 μM)] to the luminal fluid or application of a Na(+)-K(+)-ATPase inhibitor to the bath reduced Cl(-) absorption by ∼66-75% and nearly obliterated lumen-negative V(T). In contrast, ENaC inhibition had no effect in CCDs from collecting duct-specific ENaC-null mice (Hoxb7:CRE, Scnn1a(loxlox)). Whereas benzamil-sensitive Cl(-) absorption did not depend on CFTR, application of a Na(+)-K(+)-2Cl(-) cotransport inhibitor (bumetanide) to the bath or ablation of the gene encoding Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) blunted benzamil-sensitive Cl(-) absorption, although the benzamil-sensitive component of V(T) was unaffected. In conclusion, first, in CCDs from aldosterone-treated mice, most Cl(-) absorption is benzamil sensitive, whereas thiazide-sensitive Cl(-) absorption is undetectable. Second, benzamil-sensitive Cl(-) absorption occurs by inhibition of ENaC, possibly due to elimination of lumen-negative V(T). Finally, benzamil-sensitive Cl(-) flux occurs, at least in part, through transcellular transport through a pathway that depends on NKCC1.
Resumo:
BACKGROUND/AIMS: Thiazolidinediones (TZDs, like rosiglitazone (RGZ)) are peroxisome proliferator-activated receptor γ (PPARγ) agonists used to treat type 2 diabetes. Clinical limitations include TZD-induced fluid retention and body weight (BW) increase, which are inhibited by amiloride, an epithelial-sodium channel (ENaC) blocker. RGZ-induced fluid retention is maintained in mice with αENaC knockdown in the collecting duct (CD). Since ENaC in the connecting tubule (CNT) rather than in CD appears to be critical for normal NaCl retention, we aimed to further explore the role of ENaC in CNT in RGZ-induced fluid retention. METHODS: Mice with conditional inactivation of αENaC in both CNT and CD were used (αENaC lox/lox AQP2-Cre; 'αENaC-CNT/CD-KO') and compared with littermate controls (αENaC lox/lox mice; 'WT'). BW was monitored and total body water (TBW) and extracellular fluid volume (ECF) were determined by bioelectrical impedance spectroscopy (BIS) before and after RGZ (320 mg/kg diet for 10 days). RESULTS: On regular NaCl diet, αENaC-CNT/CD-KO had normal BW, TBW, ECF, hematocrit, and plasma Na(+), K(+), and creatinine, associated with an increase in plasma aldosterone compared with WT. Challenging αENaC-CNT/CD-KO with a low NaCl diet unmasked impaired NaCl and K homeostasis, consistent with effective knockdown of αENaC. In WT, RGZ increased BW (+6.1%), TBW (+8.4%) and ECF (+10%), consistent with fluid retention. These changes were significantly attenuated in αENaC-CNT/CD-KO (+3.4, 1.3, and 4.3%). CONCLUSION: Together with the previous studies, the current results are consistent with a role of αENaC in CNT in RGZ-induced fluid retention, which dovetails with the physiological relevance of ENaC in this segment. © 2014 S. Karger AG, Basel.
Resumo:
We investigated the short-term and sustained hormonal and renal effects of angiotensin II (Ang II) receptor blockade in normotensive healthy volunteers. Twenty-four subjects maintained on a fixed sodium diet were randomized to receive for 8 days a placebo or 10 or 50 mg doses of the Ang II antagonist irbesartan (SR 47436, BMS 186295) according to a double-blind, parallel group design. Plasma renin activity, plasma immunoreactive Ang II and aldosterone levels, blood pressure, renal hemodynamics, and urinary electrolyte excretion were measured for 8 hours after the first and eighth administration of each dose of irbesartan or placebo. Ang II receptor blockade with irbesartan induced a dose-dependent compensatory increase in plasma renin activity and plasma angiotensin levels and a significant decrease in plasma aldosterone levels. The compensatory rise in plasma renin activity and Ang II levels was more pronounced on day 8, reflecting a long duration of the blocking effect of irbesartan. Irbesartan induced small changes in blood pressure and did not significantly modify renal blood flow and glomerular filtration rate. However, a significant decrease in filtration fraction was observed during receptor blockade on days 1 and 8. The tubular effects of irbesartan were characterized by a dose-dependent increase in sodium and chloride excretions. Interestingly, the cumulative natriuretic response to Ang II receptor blockade was similar on days 1 and 8, suggesting that in these subjects, renal Ang II receptors are not blocked over 24 hours during repeated administration even though this antagonist has a long duration of action (t1/2 of 15 to 17 hours).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Atrial natriuretic peptides (ANP) are released into the circulation in response to enhanced atrial stretching. These peptides not only have diuretic and natriuretic properties, but also exert a relaxing effect on the vasculature. Moreover, they antagonize the contractions induced by norepinephrine and angiotensin II. Neuropeptide Y (NPY) is also a vasoactive peptide. It is widely distributed throughout the central and peripheral nervous systems. NPY is coreleased with norepinephrine by perivascular nerve endings. At high concentrations, this peptide has a direct vasoconstrictor effect. In addition, it enhances the vascular effect of various agonists, including norepinephrine and angiotensin II. Both ANP and NPY have an inhibitory effect on renin secretion. This effect may have important implications for the role of these peptides in cardiovascular regulation.
Resumo:
The circadian timing system is critically involved in the maintenance of fluid and electrolyte balance and BP control. However, the role of peripheral circadian clocks in these homeostatic mechanisms remains unknown. We addressed this question in a mouse model carrying a conditional allele of the circadian clock gene Bmal1 and expressing Cre recombinase under the endogenous Renin promoter (Bmal1(lox/lox)/Ren1(d)Cre mice). Analysis of Bmal1(lox/lox)/Ren1(d)Cre mice showed that the floxed Bmal1 allele was excised in the kidney. In the kidney, BMAL1 protein expression was absent in the renin-secreting granular cells of the juxtaglomerular apparatus and the collecting duct. A partial reduction of BMAL1 expression was observed in the medullary thick ascending limb. Functional analyses showed that Bmal1(lox/lox)/Ren1(d)Cre mice exhibited multiple abnormalities, including increased urine volume, changes in the circadian rhythm of urinary sodium excretion, increased GFR, and significantly reduced plasma aldosterone levels. These changes were accompanied by a reduction in BP. These results show that local renal circadian clocks control body fluid and BP homeostasis.
Resumo:
The enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is selectively expressed in aldosterone target tissues, conferring aldosterone selectivity for the mineralocorticoid receptor. A diminished activity causes salt-sensitive hypertension. The mechanism of the variable and distinct 11β-hydroxysteroid dehydrogenase type 2 gene (HSD11B2) expression in the cortical collecting duct is poorly understood. Here, we analyzed for the first time whether the 11β-HSD2 expression is modulated by microRNAs (miRNAs). In silico analysis revealed 53 and 27 miRNAs with potential binding sites on human or rat HSD11B2 3'-untranslated region. A reporter assay demonstrated 3'-untranslated region-dependent regulation of human and rodent HSD11B2. miRNAs were profiled from cortical collecting ducts and proximal convoluted tubules. Bioinformatic analyses showed a distinct clustering for cortical collecting ducts and proximal convoluted tubules with 53 of 375 miRNAs, where 13 were predicted to bind to the rat HSD11B2 3'-untranslated region. To gain insight into potentially relevant miRNAs in vivo, we investigated 2 models with differential 11β-HSD2 activity linked with salt-sensitive hypertension. (1) Comparing Sprague-Dawley with low and Wistar rats with high 11β-HSD2 activity revealed rno-miR-20a-5p, rno-miR-19b-3p, and rno-miR-190a-5p to be differentially expressed. (2) Uninephrectomy lowered 11β-HSD2 activity in the residual kidney with differentially expressed rno-miR-19b-3p, rno-miR-29b-3p, and rno-miR-26-5p. In conclusion, miRNA-dependent mechanisms seem to modulate 11β-HSD2 dosage in health and disease states.
Resumo:
We developed a mathematical model of Ca transport along the late distal convoluted tubule (DCT2) and the connecting tubule (CNT) to investigate the mechanisms that regulate Ca reabsorption in the DCT2-CNT. The model accounts for apical Ca influx across transient receptor potential vanilloid 5 (TRPV5) channels and basolateral Ca efflux via plasma membrane Ca-ATPase pumps and type 1 Na/Ca exchangers (NCX1). Model simulations reproduce experimentally observed variations in Ca uptake as a function of extracellular pH, Na, and Mg concentration. Our results indicate that amiloride enhances Ca reabsorption in the DCT2-CNT predominantly by increasing the driving force across NCX1, thereby stimulating Ca efflux. They also suggest that because aldosterone upregulates both apical and basolateral Na transport pathways, it has a lesser impact on Ca reabsorption than amiloride. Conversely, the model predicts that full NCX1 inhibition and parathyroidectomy each augment the Ca load delivered to the collecting duct severalfold. In addition, our results suggest that regulation of TRPV5 activity by luminal pH has a small impact, per se, on transepithelial Ca fluxes; the reduction in Ca reabsorption induced by metabolic acidosis likely stems from decreases in TRPV5 expression. In contrast, elevations in luminal Ca are predicted to significantly decrease TRPV5 activity via the Ca-sensing receptor. Nevertheless, following the administration of furosemide, the calcium-sensing receptor-mediated increase in Ca reabsorption in the DCT2-CNT is calculated to be insufficient to prevent hypercalciuria. Altogether, our model predicts complex interactions between calcium and sodium reabsorption in the DCT2-CNT.
Resumo:
Pseudohypoaldosteronism type 1 (PHA1) is a monogenic disorder of mineralocorticoid resistance characterized by salt wasting, hyperkalemia, high aldosterone levels, and failure to thrive. An autosomal recessive form (AR-PHA1) is caused by mutations in the epithelial sodium channel ENaC with usually severe and persisting multiorgan symptoms. The autosomal dominant form of PHA1 (AD-PHA1) is due to mutations in the mineralocorticoid receptor causing milder and transient symptoms restricted to the kidney. We identified a homozygous missense mutation in the SCNN1A gene (c.727T>C/p.Ser(243)Pro), encoding α-subunit of ENaC (α-ENaC) in a prematurely born boy with a severe salt-losing syndrome. The patient improved rapidly under treatment, and dietary salt supplementation could be stopped after 6 mo. Interestingly, the patient's sibling born at term and harboring the same homozygous Ser(243)Pro mutation showed no symptom of salt-losing nephropathy. In vitro expression of the αSer(243)Pro ENaC mutant revealed a slight but significant decrease in ENaC activity that is exacerbated in the presence of high Na(+) load. Our study provides the first evidence that ENaC activity is critical for the maintenance of salt balance in the immature kidney of preterm babies. Together with previous studies, it shows that, when the kidney is fully mature, the severity of the symptoms of AR-PHA1 is related to the degree of the ENaC loss of function. Finally, this study identifies a novel functional domain in the extracellular loop of ENaC.
Resumo:
Myocardial cells of mammals release a peptide with diuretic, natriuretic and vasodilating properties into the circulation. This peptide, called atrial natriuretic factor, is also involved in the regulation of plasma volume and, in addition, is instrumental in suppressing the activity of the renin-angiotensin-aldosterone system. The renal effects of the atrial natriuretic factor become less pronounced when systemic blood pressure is lowered. The auricular natriuretic factor seems to play an important role in cardiovascular regulation due to both its renal and extrarenal actions.
Resumo:
When abdominal imaging reveals the existence of unsuspected adrenal masses, a diagnostic strategy is necessary. We report the case of a woman presenting with pulmonary embolism, in whom abdominal ultrasound revealed voluminous masses in both adrenals without clinical or biological signs of hormone hypersecretion, but with mild primary adrenal failure. From a CT scan-directed needle biopsy of the right adrenal mass and subsequent staging we were able to diagnose a primary bilateral adrenal lymphoma, diffuse large B-cell type (REAL/WHO). On CHOP chemotherapy both adrenal masses decreased dramatically and the patient is in remission 18 months later. Primary adrenal lymphoma is a rare condition, since 65 cases have been reported to date. Histological diagnosis is nevertheless important, in view of the excellent response to specific therapy observed in some cases.
Resumo:
This study was designed to evaluate in healthy volunteers the renal hemodynamic and tubular effects of the orally active angiotensin II receptor antagonist losartan (DuP 753 or MK 954). Losartan or a placebo was administered to 23 subjects maintained on a high-sodium (200 mmol/d) or a low-sodium (50 mmol/d) diet in a randomized, double-blind, crossover study. The two 6-day diet periods were separated by a 5-day washout period. On day 6, the subjects were water loaded, and blood pressure, renal hemodynamics, and urinary electrolyte excretion were measured for 6 hours after a single 100-mg oral dose of losartan (n = 16) or placebo (n = 7). Losartan induced no significant changes in blood pressure, glomerular filtration rate, or renal blood flow in these water-loaded subjects, whatever the sodium diet. In subjects on a low-salt diet, losartan markedly increased urinary sodium excretion from 115 +/- 9 to 207 +/- 21 mumol/min (P < .05). The fractional excretion of endogenous lithium was unchanged, suggesting no effect of losartan on the early proximal tubule in our experimental conditions. Losartan also increased urine flow rate (from 10.5 +/- 0.4 to 13.1 +/- 0.6 mL/min, P < .05); urinary potassium excretion (from 117 +/- 6.9 to 155 +/- 11 mumol/min); and the excretion of chloride, magnesium, calcium, and phosphate. In subjects on a high-salt diet, similar effects of losartan were observed, but the changes induced by the angiotensin II antagonist did not reach statistical significance. In addition, losartan demonstrated significant uricosuric properties with both sodium diets.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Primary hyperaldosteronism is a clinical syndrome characterized by an elevated aldosterone secretion by the adrenals. The present case series describes 7 cats with primary hyperaldosteronism, which were presented between 2002 and 2011. Common clinical symptoms were weakness, anorexia, cervical ventroflexion and blindness. All cats showed hypokalemia. In 6 cats, blood pressure was determined: 5 cats showed hypertension, of which 4 animals exhibited retinal detachment and blindness. In the ultrasonographic examination, unilateral adrenomegaly was present in 6 cats whereas one animal showed normal adrenals. In 4 cats, the serum aldosterone concentration was above the reference range. Five cats underwent unilateral adrenalectomy, which was accomplished uneventfully and returned the electrolytes back to normal. Histopathological examination of the adrenals revealed 2 carcinomas and 4 adenomas; one cat with ultrasonographic normal adrenals exhibited bilateral nodular hyperplasia.