130 resultados para phosphate buffer capacity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolic balance method was performed on three men to investigate the fate of large excesses of carbohydrate. Glycogen stores, which were first depleted by diet (3 d, 8.35 +/- 0.27 MJ [1994 +/- 65 kcal] decreasing to 5.70 +/- 1.03 MJ [1361 +/- 247 kcal], 15% protein, 75% fat, 10% carbohydrate) and exercise, were repleted during 7 d carbohydrate overfeeding (11% protein, 3% fat, and 86% carbohydrate) providing 15.25 +/- 1.10 MJ (3642 +/- 263 kcal) on the first day, increasing progressively to 20.64 +/- 1.30 MJ (4930 +/- 311 kcal) on the last day of overfeeding. Glycogen depletion was again accomplished with 2 d of carbohydrate restriction (2.52 MJ/d [602 kcal/d], 85% protein, and 15% fat). Glycogen storage capacity in man is approximately 15 g/kg body weight and can accommodate a gain of approximately 500 g before net lipid synthesis contributes to increasing body fat mass. When the glycogen stores are saturated, massive intakes of carbohydrate are disposed of by high carbohydrate-oxidation rates and substantial de novo lipid synthesis (150 g lipid/d using approximately 475 g CHO/d) without postabsorptive hyperglycemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Assessment of capacity to consent to treatment is an important legal and ethical issue in daily medical practice. In this study we carefully evaluated the capacity to consent to treatment in patients admitted to an acute medical ward using an assessment by members of the medical team, the specific Silberfeld's score, the MMSE and an assessment by a senior psychiatrist. METHODS: Over a 3 month period, 195 consecutive patients of an internal medicine ward in a university hospital were included and their capacity to consent was evaluated within 72 hours of admission. RESULTS: Among the 195 patients, 38 were incapable of consenting to treatment (unconscious patients or severe cognitive impairment) and 14 were considered as incapable of consenting by the psychiatrist (prevalence of incapacity to consent of 26.7%). Agreement between the psychiatrist's evaluation and the Silberfeld questionnaire was poor (sensitivity 35.7%, specificity 91.6%). Experienced clinicians showed a higher agreement (sensitivity 57.1%, specificity 96.5%). A decision shared by residents, chief residents and nurses was the best predictor for agreement with the psychiatric assessment (sensitivity 78.6%, specificity 94.3%). CONCLUSION: Prevalence of incapacity to consent to treatment in patients admitted to an acute internal medicine ward is high. While the standardized Silberfeld questionnaire and the MMSE are not appropriate for the evaluation of the capacity to consent in this setting, an assessment by the multidisciplinary medical team concurs with the evaluation by a senior psychiatrist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between zinc (Zn) and phosphate (Pi) nutrition in plants have long been recognized, but little information is available on their molecular bases and biological significance. This work aimed at examining the effects of Zn deficiency on Pi accumulation in Arabidopsis thaliana and uncovering genes involved in the Zn-Pi synergy. Wild-type plants as well as mutants affected in Pi signalling and transport genes, namely the transcription factor PHR1, the E2-conjugase PHO2, and the Pi exporter PHO1, were examined. Zn deficiency caused an increase in shoot Pi content in the wild type as well as in the pho2 mutant, but not in the phr1 or pho1 mutants. This indicated that PHR1 and PHO1 participate in the coregulation of Zn and Pi homeostasis. Zn deprivation had a very limited effect on transcript levels of Pi-starvation-responsive genes such as AT4, IPS1, and microRNA399, or on of members of the high-affinity Pi transporter family PHT1. Interestingly, one of the PHO1 homologues, PHO1;H3, was upregulated in response to Zn deficiency. The expression pattern of PHO1 and PHO1;H3 were similar, both being expressed in cells of the root vascular cylinder and both localized to the Golgi when expressed transiently in tobacco cells. When grown in Zn-free medium, pho1;h3 mutant plants displayed higher Pi contents in the shoots than wild-type plants. This was, however, not observed in a pho1 pho1;h3 double mutant, suggesting that PHO1;H3 restricts root-to-shoot Pi transfer requiring PHO1 function for Pi homeostasis in response to Zn deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that in humans the germinal center reactions produce three types of V(D)J mutated B cells in similar proportions, i.e. Ig-switched, IgD-IgM+ (IgM-only) and IgD+IgM+ cells, and that together they form the CD27+ compartment of recirculating B cells. We investigated the Ig isotype switch capacity of these cells. Peripheral blood B subsets were sorted and IgG subclass secretion in presence or absence of IL-4 was compared in B cell assays which lead to Ig secretion in all (coculture with EL-4 thymoma cells) or only in CD27+ (CD40L stimulation) B cells. Already switched IgG+ B cells showed no significant sequential switch and IgM-only cells also had a low switch capacity, but IgD+CD27+ switched as much as IgD+CD27- B cells to all IgG subclasses. Thus, in switched B cells some alterations compromising further switch options occur frequently; IgM-only cells may result from aborted switch. However, IgD+CD27+ human B cells, extensively V(D)J mutated and "naive" regarding switch, build up a repertoire of B cells combining (1) novel cross-reactive specificities, (2) increased differentiation capacity (including after T-independent stimulation by Staphylococcus aureus Cowan I) and (3) the capacity to produce appropriate isotypes when they respond to novel pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

greater white toothed shrew; Crocidura russula; colonisation capacity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: basic calcium phosphate (BCP) crystals are commonly found in osteoarthritis (OA) and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1). In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals. METHODOLOGY PRINCIPAL FINDINGS: synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages. CONCLUSIONS SIGNIFICANCE: intra-articular BCP crystals can elicit synovial inflammation and cartilage degradation suggesting that BCP crystals have a direct pathogenic role in OA. The effects are independent of IL-1 and NLRP3 inflammasome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: We tested the effects of the three forms of basic calcium phosphate (BCP) crystals (octacalcium phosphate (OCP), carbonate-substituted apatite (CA) and hydroxyapatite (HA)) on monocytes and macrophages on IL-1β secretion. The requirement for the NALP3 inflammasome and TLR2 and TLR4 receptors in this acute response was analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of Pi to the extracellular medium as early as 2-3 h after addition of estradiol. Net Pi export triggered by PHO1 induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells, strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. METHODS: Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATP) of vastus lateralis was determined in vivo by P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O consumption) was characterized using ATP per St3 respiration (ATP/St3). RESULTS: In vitro St3 respiration was significantly correlated with in vivo ATP (r = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO peak (r = .33, p = .006). ATP (r = .158, p = .03) and VO peak (r = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATP/St3 and VO peak in a multiple linear regression model improved the prediction of preferred walking speed (r = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. CONCLUSIONS: Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphate is a crucial and often limiting nutrient for plant growth. To obtain inorganic phosphate (P(i) ), which is very insoluble, and is heterogeneously distributed in the soil, plants have evolved a complex network of morphological and biochemical processes. These processes are controlled by a regulatory system triggered by P(i) concentration, not only present in the medium (external P(i) ), but also inside plant cells (internal P(i) ). A 'split-root' assay was performed to mimic a heterogeneous environment, after which a transcriptomic analysis identified groups of genes either locally or systemically regulated by P(i) starvation at the transcriptional level. These groups revealed coordinated regulations for various functions associated with P(i) starvation (including P(i) uptake, P(i) recovery, lipid metabolism, and metal uptake), and distinct roles for members in gene families. Genetic tools and physiological analyses revealed that genes that are locally regulated appear to be modulated mostly by root development independently of the internal P(i) content. By contrast, internal P(i) was essential to promote the activation of systemic regulation. Reducing the flow of P(i) had no effect on the systemic response, suggesting that a secondary signal, independent of P(i) , could be involved in the response. Furthermore, our results display a direct role for the transcription factor PHR1, as genes systemically controlled by low P(i) have promoters enriched with P1BS motif (PHR1-binding sequences). These data detail various regulatory systems regarding P(i) starvation responses (systemic versus local, and internal versus external P(i) ), and provide tools to analyze and classify the effects of P(i) starvation on plant physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Lipoproteins play a critical role in the development of atherosclerosis, which might result partly from their capacity to induce specific intracellular signaling pathways. The goal of this review is to summarize the signaling properties of lipoproteins, in particular, their capacity to induce activation of mitogen-activated protein kinase pathways and the resulting modulation of cellular responses in blood vessel cells. RECENT FINDINGS: Lipoproteins activate the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in all blood vessel cell types. This may require lipoprotein docking to scavenger receptor B1, allowing transfer of cholesterol and sphingosine-1-phosphate to plasma membranes. Subsequent propagation of the signals probably requires the stimulation of G protein-coupled receptors, followed by the transactivation of receptor tyrosine kinases. Lipoprotein-induced extracellular signal-regulated kinase activity favors cell proliferation, whereas lipoprotein-induced p38 mitogen-activated protein kinase activity leads to cell hyperplasia and promotes cell migration. Some signaling pathways and cellular effects induced by lipoproteins have been observed in atherosclerotic plaques and therefore represent potential targets for the development of anti-atherosclerotic drugs. SUMMARY: The main blood vessel cell types have the capacity to activate protein kinase pathways in the presence of lipoproteins. This induces cell proliferation, hyperplasia and migration, known to be dysregulated in atherosclerotic lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Recent data suggest that beta-blockers can be beneficial in subgroups of patients with chronic heart failure (CHF). For metoprolol and carvedilol, an increase in ejection fraction has been shown and favorable effects on the myocardial remodeling process have been reported in some studies. We examined the effects of bisoprolol fumarate on exercise capacity and left ventricular volume with magnetic resonance imaging (MRI) and applied a novel high-resolution MRI tagging technique to determine myocardial rotation and relaxation velocity. METHODS: Twenty-eight patients (mean age, 57 +/- 11 years; mean ejection fraction, 26 +/- 6%) were randomized to bisoprolol fumarate (n = 13) or to placebo therapy (n = 15). The dosage of the drugs was titrated to match that of the the Cardiac Insufficiency Bisoprolol Study protocol. Hemodynamic and gas exchange responses to exercise, MRI measurements of left ventricular end-systolic and end-diastolic volumes and ejection fraction, and left ventricular rotation and relaxation velocities were measured before the administration of the drug and 6 and 12 months later. RESULTS: After 1 year, heart rate was reduced in the bisoprolol fumarate group both at rest (81 +/- 12 before therapy versus 61 +/- 11 after therapy; P <.01) and peak exercise (144 +/- 20 before therapy versus 127 +/- 17 after therapy; P <.01), which indicated a reduction in sympathetic drive. No differences were observed in heart rate responses in the placebo group. No differences were observed within or between groups in peak oxygen uptake, although work rate achieved was higher (117.9 +/- 36 watts versus 146.1 +/- 33 watts; P <.05) and exercise time tended to be higher (9.1 +/- 1.7 minutes versus 11.4 +/- 2.8 minutes; P =.06) in the bisoprolol fumarate group. A trend for a reduction in left ventricular end-diastolic volume (-54 mL) and left ventricular end-systolic volume (-62 mL) in the bisoprolol fumarate group occurred after 1 year. Ejection fraction was higher in the bisoprolol fumarate group (25.0 +/- 7 versus 36.2 +/- 9%; P <.05), and the placebo group remained unchanged. Most changes in volume and ejection fraction occurred during the latter 6 months of treatment. With myocardial tagging, insignificant reductions in left ventricular rotation velocity were observed in both groups, whereas relaxation velocity was reduced only after bisoprolol fumarate therapy (by 39%; P <.05). CONCLUSION: One year of bisoprolol fumarate therapy resulted in an improvement in exercise capacity, showed trends for reductions in end-diastolic and end-systolic volumes, increased ejection fraction, and significantly reduced relaxation velocity. Although these results generally confirm the beneficial effects of beta-blockade in patients with chronic heart failure, they show differential effects on systolic and diastolic function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, I develop analytical models to price the value of supply chain investments under demand uncer¬tainty. This thesis includes three self-contained papers. In the first paper, we investigate the value of lead-time reduction under the risk of sudden and abnormal changes in demand forecasts. We first consider the risk of a complete and permanent loss of demand. We then provide a more general jump-diffusion model, where we add a compound Poisson process to a constant-volatility demand process to explore the impact of sudden changes in demand forecasts on the value of lead-time reduction. We use an Edgeworth series expansion to divide the lead-time cost into that arising from constant instantaneous volatility, and that arising from the risk of jumps. We show that the value of lead-time reduction increases substantially in the intensity and/or the magnitude of jumps. In the second paper, we analyze the value of quantity flexibility in the presence of supply-chain dis- intermediation problems. We use the multiplicative martingale model and the "contracts as reference points" theory to capture both positive and negative effects of quantity flexibility for the downstream level in a supply chain. We show that lead-time reduction reduces both supply-chain disintermediation problems and supply- demand mismatches. We furthermore analyze the impact of the supplier's cost structure on the profitability of quantity-flexibility contracts. When the supplier's initial investment cost is relatively low, supply-chain disin¬termediation risk becomes less important, and hence the contract becomes more profitable for the retailer. We also find that the supply-chain efficiency increases substantially with the supplier's ability to disintermediate the chain when the initial investment cost is relatively high. In the third paper, we investigate the value of dual sourcing for the products with heavy-tailed demand distributions. We apply extreme-value theory and analyze the effects of tail heaviness of demand distribution on the optimal dual-sourcing strategy. We find that the effects of tail heaviness depend on the characteristics of demand and profit parameters. When both the profit margin of the product and the cost differential between the suppliers are relatively high, it is optimal to buffer the mismatch risk by increasing both the inventory level and the responsive capacity as demand uncertainty increases. In that case, however, both the optimal inventory level and the optimal responsive capacity decrease as the tail of demand becomes heavier. When the profit margin of the product is relatively high, and the cost differential between the suppliers is relatively low, it is optimal to buffer the mismatch risk by increasing the responsive capacity and reducing the inventory level as the demand uncertainty increases. In that case, how¬ever, it is optimal to buffer with more inventory and less capacity as the tail of demand becomes heavier. We also show that the optimal responsive capacity is higher for the products with heavier tails when the fill rate is extremely high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphate homeostasis in multicellular eukaryotes depends on both phosphate influx and efflux. The mammalian Xenotropic Polytropic Virus Receptor 1 (XPR1) shares homology to the Arabidopsis PHO1, a phosphate exporter expressed in roots. However, phosphate export activity of XPR1 has not yet been demonstrated in a heterologous system. Here, wedemonstrate that transient expression in tobacco leaves of XPR1-GFP leads to specific phosphate export. Like PHO1-GFP, XPR1-GFP is localized predominantly to the endomembrane system in tobacco cells. These results show that tobacco leaves are a good heterologous system to study the transport activity of members of the PHO1/XPR1 family.