210 resultados para feeding levels
Resumo:
AIMS: To characterize and compare the pharmacokinetic profiles of bromazepam, omeprazole and paracetamol when administered by the oral and nasogastric routes to the same healthy cohort of volunteers. METHODS: In a prospective, monocentric, randomized crossover study, eight healthy volunteers received the three drugs by the oral (OR) and nasogastric routes (NT). Sequential plasma samples were analyzed by high-performance liquid chromatography-UV, pharmacokinetic parameters (Cmax, AUC(0-infinity), t(1/2), k(e), tmax) were compared statistically, and Cmax, AUC(0-infinity) and t(max) were analyzed for bioequivalence. RESULTS: A statistically significant difference was seen in the AUC(0-infinity) of bromazepam, with nasogastric administration decreasing availability by about 25%: AUC(OR) = 2501 ng mL(-1) h; AUC(NT) = 1855 ng mL(-1) h (p < 0.05); ratio (geometric mean) = 0.74 [90% confidence interval (CI) 0.64-0.87]. However, this does not appear to be clinically relevant given the usual dosage range and the drug's half-life (approx. 30 h). A large interindividual variability in omeprazole parameters prevented any statistical conclusion from being drawn in terms of both modes of administration despite their similar average profile: AUC(OR) = 579 ng mL(-1) h; AUC(NT) = 587 ng mL(-1) h (p > 0.05); ratio (geometric mean) = 1.01 (90% CI 0.64-1.61). An extended study with a larger number of subjects may possibly provide clearer answers. The narrow 90% confidence limits of paracetamol indicate bioequivalence: AUC(OR) = 37 microg mL(-1) h; AUC(NT) = 41 microg mL(-1) h(p > 0.05); ratio (geometric mean) = 1.12 (90% CI 0.98-1.28). CONCLUSION: The results of this study show that the nasogastric route of administration does not appear to cause marked, clinically unsuitable alterations in the bioavailability of the tested drugs.
Resumo:
The effect of exendin-(9-39), a described antagonist of the glucagon-like peptide-1 (GLP-1) receptor, was evaluated on the formation of cAMP- and glucose-stimulated insulin secretion (GSIS) by the conditionally immortalized murine betaTC-Tet cells. These cells have a basal intracellular cAMP level that can be increased by GLP-1 with an EC50 of approximately 1 nM and can be decreased dose dependently by exendin-(9-39). This latter effect was receptor dependent, as a beta-cell line not expressing the GLP-1 receptor was not affected by exendin-(9-39). It was also not due to the endogenous production of GLP-1, because this effect was observed in the absence of detectable preproglucagon messenger RNA levels and radioimmunoassayable GLP-1. Importantly, GSIS was shown to be sensitive to this basal level of cAMP, as perifusion of betaTC-Tet cells in the presence of exendin-(9-39) strongly reduced insulin secretion. This reduction of GSIS, however, was observed only with growth-arrested, not proliferating, betaTC-Tet cells; it was also seen with nontransformed mouse beta-cells perifused in similar conditions. These data therefore demonstrated that 1) exendin-(9-39) is an inverse agonist of the murine GLP-1 receptor; 2) the decreased basal cAMP levels induced by this peptide inhibit the secretory response of betaTC-Tet cells and mouse pancreatic islets to glucose; 3) as this effect was observed only with growth-arrested cells, this indicates that the mechanism by which cAMP leads to potentiation of insulin secretion is different in proliferating and growth-arrested cells; and 4) the presence of the GLP-1 receptor, even in the absence of bound peptide, is important for maintaining elevated intracellular cAMP levels and, therefore, the glucose competence of the beta-cells.
Resumo:
BACKGROUND: International comparisons of social inequalities in alcohol use have not been extensively investigated. The purpose of this study was to examine the relationship of country-level characteristics and individual socio-economic status (SES) on individual alcohol consumption in 33 countries. METHODS: Data on 101,525 men and women collected by cross-sectional surveys in 33 countries of the GENACIS study were used. Individual SES was measured by highest attained educational level. Alcohol use measures included drinking status and monthly risky single occasion drinking (RSOD). The relationship between individuals' education and drinking indicators was examined by meta-analysis. In a second step the individual level data and country data were combined and tested in multilevel models. As country level indicators we used the Purchasing Power Parity of the gross national income, the Gini coefficient and the Gender Gap Index. RESULTS: For both genders and all countries higher individual SES was positively associated with drinking status. Also higher country level SES was associated with higher proportions of drinkers. Lower SES was associated with RSOD among men. Women of higher SES in low income countries were more often RSO drinkers than women of lower SES. The opposite was true in higher income countries. CONCLUSION: For the most part, findings regarding SES and drinking in higher income countries were as expected. However, women of higher SES in low and middle income countries appear at higher risk of engaging in RSOD. This finding should be kept in mind when developing new policy and prevention initiatives.
Resumo:
In this study, hypothalamic activation was performed by dehydration-induced anorexia (DIA) and overnight food suppression (OFS) in female rats. The assessment of the hypothalamic response to these challenges by manganese-enhanced MRI showed increased neuronal activity in the paraventricular nuclei (PVN) and lateral hypothalamus (LH), both known to be areas involved in the regulation of food intake. The effects of DIA and OFS were compared by generating T-score maps. Increased neuronal activation was detected in the PVN and LH of DIA rats relative to OFS rats. In addition, the neurochemical profile of the PVN and LH were measured by (1) H MRS at 14.1T. Significant increases in metabolite levels were measured in DIA and OFS relative to control rats. Statistically significant increases in γ-aminobutyric acid were found in DIA (p=0.0007) and OFS (p<0.001) relative to control rats. Lactate increased significantly in DIA (p=0.03), but not in OFS, rats. This work shows that manganese-enhanced MRI coupled to (1) H MRS at high field is a promising noninvasive method for the investigation of the neural pathways and mechanisms involved in the control of food intake, in the autonomic and endocrine control of energy metabolism and in the regulation of body weight.
Resumo:
Urea nitrogen, creatinine, and uric acid are relatively stable in postmortem serum and may, therefore, be used for diagnostic purposes when chronic kidney disease and end-stage renal failure are investigated as causes of death. Nevertheless, uncertainties remain in defining the best alternative to postmortem serum for the identification and assessment of significantly decreased kidney function. In this study, we investigated urea nitrogen, creatinine, and uric acid levels in postmortem serum, pericardial fluid, and vitreous humor in a series of medico-legal cases (500 autopsies) with various causes of death. No postmortem interval-related differences were observed in any of the investigated fluids for any analyzed parameter, confirming the biochemical stability of all compounds after death. Data analysis failed to reveal statistically significant differences between postmortem serum and pericardial fluid urea nitrogen, creatinine, and uric acid concentrations. Conversely, statistically significant differences were observed in all analyzed biomarkers between postmortem serum and vitreous humor levels, with lower concentrations of all markers measured in vitreous. The results of this study suggest that, in order to estimate as accurately as possible blood analyte concentrations at the time of death, pericardial fluid should be preferred to vitreous humor.
Resumo:
Neuropeptide Y (NPY) is present in the adrenal medulla, in sympathetic neurons as well as in the circulation. This peptide not only exerts a direct vasoconstrictor effect, but also potentiates the vasoconstriction evoked by norepinephrine and sympathetic nerve stimulation. The vasoconstrictor effect of norepinephrine is also enhanced by salt loading and reduced by salt depletion. The purpose of this study was therefore to assess whether there exists a relationship between dietary sodium intake and the levels of circulating NPY. Uninephrectomized normotensive rats were maintained for 3 weeks either on a low, a regular or a high sodium intake. On the day of the experiment, plasma levels of NPY and catecholamines were measured in the unanesthetized animals. There was no significant difference in plasma norepinephrine and epinephrine levels between the 3 groups of rats. Plasma NPY levels were the lowest (65.4 +/- 8.8 fmol/ml, n-10, Mean +/- SEM) in salt-restricted and the highest (151.2 +/- 25 fmol/ml, n-14, p less than 0.02) in salt-loaded animals. Intermediate values were obtained in rats kept on a regular sodium intake (117.6 +/- 20.1 fmol/ml). These findings are therefore compatible with the hypothesis that sodium balance might to some extent influence blood pressure regulation via changes in circulating NPY levels which in turn modify blood pressure responsiveness.
Resumo:
Six patients, five of whom had normal and one impaired renal function, and all suffering from purulent arthritis caused by cephalosporin-sensitive germs, were given a seven-day course of 8 g cephacetrile daily. On the first day, 6 g were administered by continuous intravenous infusion at the rate of 500 mg/h, followed by 2 g over a further 45 min. On days 2 to 7, the patients received 2 short infusions of 4 g each at an interval of 12 h. In four patients with normal renal function, serum half-life ranged from 0.8 to 1.4 h, serum levels during continuous infusion from 19 to 31 microgram/ml, and total clearances from 265 to 434 ml/min. In one patients, these values were 1.6 h, 70 microgram/ml and 131 ml/min respectively (small volume of distribution). The concentrations in the synovial fluid varied from 2 to 29 mcirogram/ml; they were generally lower than the serum levels, but clearly exceeded the minimum inhibitory concentrations for germs commonly present in purulent arthritis. In five patients, the synovial fluid became germ-free and the arthritis was clinically cured. In the case presenting with renal insufficiency, the serum half-life was 5.8 h. During continuous administration, a steady state was not attained; peak serum levels amo9nted to 75 microgram/ml and the total clearance to 61 ml/min. The cephacetrile concentrations in the synovial fluid were very high (26 and 67 microgram/ml). In this case, in which the renal insufficiency associated with mycosis fungoides was present before the treatment, renal function deteriorated futher during treatment while the arthritis improved.
Resumo:
C57BL/6J mice were fed a high-fat, carbohydrate-free diet (HFD) for 9 mo. Approximately 50% of the mice became obese and diabetic (ObD), approximately 10% lean and diabetic (LD), approximately 10% lean and nondiabetic (LnD), and approximately 30% displayed intermediate phenotype. All of the HFD mice were insulin resistant. In the fasted state, whole body glucose clearance was reduced in ObD mice, unchanged in the LD mice, and increased in the LnD mice compared with the normal-chow mice. Because fasted ObD mice were hyperinsulinemic and the lean mice slightly insulinopenic, there was no correlation between insulin levels and increased glucose utilization. In vivo, tissue glucose uptake assessed by 2-[(14)C]deoxyglucose accumulation was reduced in most muscles in the ObD mice but increased in the LnD mice compared with the values of the control mice. In the LD mice, the glucose uptake rates were reduced in extensor digitorum longus (EDL) and total hindlimb but increased in soleus, diaphragm, and heart. When assessed in vitro, glucose utilization rates in the absence and presence of insulin were similar in diaphragm, soleus, and EDL muscles isolated from all groups of mice. Thus, in genetically homogenous mice, HFD feeding lead to different metabolic adaptations. Whereas all of the mice became insulin resistant, this was associated, in obese mice, with decreased glucose clearance and hyperinsulinemia and, in lean mice, with increased glucose clearance in the presence of mild insulinopenia. Therefore, increased glucose clearance in lean mice could not be explained by increased insulin level, indicating that other in vivo mechanisms are triggered to control muscle glucose utilization. These adaptive mechanisms could participate in the protection against development of obesity.
Resumo:
The therapeutic activity of selective serotonin (5-HT) reuptake inhibitors (SSRIs) relies on long-term adaptation at pre- and post-synaptic levels. The sustained administration of SSRIs increases the serotonergic neurotransmission in response to a functional desensitization of the inhibitory 5-HT1A autoreceptor in the dorsal raphe. At nerve terminal such as the hippocampus, the enhancement of 5-HT availability increases brain-derived neurotrophic factor (BDNF) synthesis and signaling, a major event in the stimulation of adult neurogenesis. In physiological conditions, BDNF would be expressed at functionally relevant levels in neurons. However, the recent observation that SSRIs upregulate BDNF mRNA in primary cultures of astrocytes strongly suggest that the therapeutic activity of antidepressant drugs might result from an increase in BDNF synthesis in this cell type. In this study, by overexpressing BDNF in astrocytes, we balanced the ratio between astrocytic and neuronal BDNF raising the possibility that such manipulation could positively reverberate on anxiolytic-/antidepressant-like activities in transfected mice. Our results indicate that BDNF overexpression in hippocampal astrocytes produced anxiolytic-/antidepressant-like activity in the novelty suppressed feeding in relation with the stimulation of hippocampal neurogenesis whereas it did not potentiate the effects of the SSRI fluoxetine on these parameters. Moreover, overexpressing BDNF revealed the anxiolytic-like activity of fluoxetine in the elevated plus maze while attenuating 5-HT neurotransmission in response to a blunted downregulation of the 5-HT1A autoreceptor. These results emphasize an original role of hippocampal astrocytes in the synthesis of BDNF, which can act through neurogenesis-dependent and -independent mechanisms to regulate different facets of anxiolytic-like responses.
Resumo:
Maintenance by the kidney of stable plasma K(+) values is crucial, as plasma K(+) controls muscle and nerve activity. Since renal K(+) excretion is regulated by the circadian clock, we aimed to identify the ion transporters involved in this process. In control mice, the renal mRNA expression of H,K-ATPase type 2 (HKA2) is 25% higher during rest compared to the activity period. Conversely, under dietary K(+) restriction, HKA2 expression is ∼40% higher during the activity period. This reversal suggests that HKA2 contributes to the circadian regulation of K(+) homeostasis. Compared to their wild-type (WT) littermates, HKA2-null mice fed a normal diet have 2-fold higher K(+) renal excretion during rest. Under K(+) restriction, their urinary K(+) loss is 40% higher during the activity period. This inability to excrete K(+) "on time" is reflected in plasma K(+) values, which vary by 12% between activity and rest periods in HKA2-null mice but remain stable in WT mice. Analysis of the circadian expression of HKA2 regulators suggests that Nrf2, but not progesterone, contributes to its rhythmicity. Therefore, HKA2 acts to maintain the circadian rhythm of urinary K(+) excretion and preserve stable plasma K(+) values throughout the day.
Resumo:
Combining measurements of the monoamine metabolites in the cerebrospinal fluid (CSF) and neuroimaging can increase efficiency of drug discovery for treatment of brain disorders. To address this question, we examined five drug-naïve patients suffering from schizophrenic disorder. Patients were assessed clinically, using the Positive and Negative Syndrome Scale (PANSS): at baseline and then at weekly intervals. Plasma and CSF levels of quetiapine and norquetiapine as well CSF 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindole-acetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) were obtained at baseline and again after at least a 4 week medication trail with 600 mg/day quetiapine. CSF monoamine metabolites levels were compared with dopamine D(2) receptor occupancy (DA-D(2)) using [(18)F]fallypride and positron emission tomography (PET). Quetiapine produced preferential occupancy of parietal cortex vs. putamenal DA-D(2), 41.4% (p<0.05, corrected for multiple comparisons). DA-D(2) receptor occupancies in the occipital and parietal cortex were correlated with CSF quetiapine and norquetiapine levels (p<0.01 and p<0.05, respectively). CSF monoamine metabolites were significantly increased after treatment and correlated with regional receptor occupancies in the putamen [DOPAC: (p<0.01) and HVA: (p<0.05)], caudate nucleus [HVA: (p<0.01)], thalamus [MHPG: (p<0.05)] and in the temporal cortex [HVA: (p<0.05) and 5-HIAA: (p<0.05)]. This suggests that CSF monoamine metabolites levels reflect the effects of quetiapine treatment on neurotransmitters in vivo and indicates that monitoring plasma and CSF quetiapine and norquetiapine levels may be of clinical relevance.
Resumo:
BACKGROUND: Iterative reconstruction (IR) techniques reduce image noise in multidetector computed tomography (MDCT) imaging. They can therefore be used to reduce radiation dose while maintaining diagnostic image quality nearly constant. However, CT manufacturers offer several strength levels of IR to choose from. PURPOSE: To determine the optimal strength level of IR in low-dose MDCT of the cervical spine. MATERIAL AND METHODS: Thirty consecutive patients investigated by low-dose cervical spine MDCT were prospectively studied. Raw data were reconstructed using filtered back-projection and sinogram-affirmed IR (SAFIRE, strength levels 1 to 5) techniques. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured at C3-C4 and C6-C7 levels. Two radiologists independently and blindly evaluated various anatomical structures (both dense and soft tissues) using a 4-point scale. They also rated the overall diagnostic image quality using a 10-point scale. RESULTS: As IR strength levels increased, image noise decreased linearly, while SNR and CNR both increased linearly at C3-C4 and C6-C7 levels (P < 0.001). For the intervertebral discs, the content of neural foramina and dural sac, and for the ligaments, subjective image quality scores increased linearly with increasing IR strength level (P ≤ 0.03). Conversely, for the soft tissues and trabecular bone, the scores decreased linearly with increasing IR strength level (P < 0.001). Finally, the overall diagnostic image quality scores increased linearly with increasing IR strength level (P < 0.001). CONCLUSION: The optimal strength level of IR in low-dose cervical spine MDCT depends on the anatomical structure to be analyzed. For the intervertebral discs and the content of neural foramina, high strength levels of IR are recommended.
Resumo:
OBJECTIVE: Gaining postpyloric access in ventilated, sedated ICU patients usually requires time-consuming procedures such as endoscopy. Recently, a feeding tube has been introduced that migrates spontaneously into the jejunum in surgical patients. The study aimed at assessing the rate of migration of this tube in critically ill patients. DESIGN: Prospective descriptive trial. SETTING: Surgical ICU in a tertiary University Hospital. PATIENTS: One hundred and five consecutive surgical ICU patients requiring enteral feeding were enrolled, resulting in 128 feeding-tube placement attempts. METHODS: A self-propelled tube was used and followed up for 3 days: progression was assessed by daily contrast-injected X-ray. Severity of illness was assessed with SAPS II and organ failure assessed with SOFA score. RESULTS: The patients were aged 55+/-19 years (mean+/-SD) with SAPS II score of 45+/-18. Of the 128 tube placement attempts, 12 could not be placed in the stomach; eight were accidentally pulled out while in gastric position due to the necessity to avoid fixation during the progression phase. Among organ failures, respiratory failure predominated, followed by cardiovascular. By day 3, the postpyloric progression rate was 63/128 tubes (49%). There was no association between migration and age, or SAPS II score, but the progression rate was significantly poorer in patients with hemodynamic failure. Use of norepinephrine and morphine were negatively associated with tube progression (P<0.001), while abdominal surgery was not. In ten patients, jejunal tubes were placed by endoscopy. CONCLUSION: Self-propelled feeding tubes progressed from the stomach to the postpyloric position in 49% of patients, reducing the number of endoscopic placements: these tubes may facilitate enteral nutrient delivery in the ICU.
Resumo:
The role of peroxisome proliferator activator receptor (PPAR)β/δ in the pathogenesis of Alzheimer's disease has only recently been explored through the use of PPARβ/δ agonists. Here we evaluated the effects of PPARβ/δ deficiency on the amyloidogenic pathway and tau hyperphosphorylation. PPARβ/δ-null mice showed cognitive impairment in the object recognition task, accompanied by enhanced DNA-binding activity of NF-κB in the cortex and increased expression of IL-6. In addition, two NF-κB-target genes involved in β-amyloid (Aβ) synthesis and deposition, the β site APP cleaving enzyme 1 (Bace1) and the receptor for advanced glycation endproducts (Rage), respectively, increased in PPARβ/δ-null mice compared to wild type animals. The protein levels of glial fibrillary acidic protein (GFAP) increased in the cortex of PPARβ/δ-null mice, which would suggest the presence of astrogliosis. Finally, tau hyperphosphorylation at Ser199 and enhanced levels of PHF-tau were associated with increased levels of the tau kinases CDK5 and phospho-ERK1/2 in the cortex of PPARβ/δ(-/-) mice. Collectively, our findings indicate that PPARβ/δ deficiency results in cognitive impairment associated with enhanced inflammation, astrogliosis and tau hyperphosphorylation in the cortex.
Resumo:
In many avian species, nestlings have evolved striking plumage, behaviours and mouth colours to obtain a greater share of parental investment. Studies revealing parental feeding preferences for nestlings with red gapes have proposed that red mouth colour in songbirds can act as a signal of nestling need or condition. Alternative hypotheses suggest that bright nestling mouths in cavity-nesting birds evolved to increase nestling detectability by the parents. We tested whether nestling mouth colour affects parental feeding preferences in great tits, Pants major L. In broods of six young, we experimentally painted mouth gapes and flanges either red or yellow and tested the effect of mouth colour on nestlings' mass gain under two lighting conditions. In nests with high luminosity, there was no significant effect of mouth colour on mass gain. In nests with low luminosity, nestlings with red gapes and flanges gained less mass than nestlings with red gapes and yellow flanges or both yellow gapes and flanges. Our results suggest that, in nests with low luminosity, red mouths decreased nestling detectability to the feeding parents and support the hypothesis that poor luminosity in nesting cavities can select for pale mouths. Overall, our results do not support the hypothesis that red mouth colour signals nestling need or condition to parent great tits.