173 resultados para SELECTIVE DEGRADATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rock-paper-scissors (RPS) dynamics, which maintain genetic polymorphisms over time through negative frequency-dependent (FD) selection, can evolve in short-lived species with no generational overlap, where they produce rapid morph frequency cycles. However, most species have overlapping generations and thus, rapid RPS dynamics are thought to require stronger FD selection, the existence of which yet needs to be proved. Here, we experimentally demonstrate that two cumulative selective episodes, FD sexual selection reinforced by FD selection on offspring survival, generate sufficiently strong selection to generate rapid morph frequency cycles in the European common lizard Zootoca vivipara, a multi-annual species with major generational overlap. These findings show that the conditions required for the evolution of RPS games are fulfilled by almost all species exhibiting genetic polymorphisms and suggest that RPS games may be responsible for the maintenance of genetic diversity in a wide range of species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)--major players of endodermal differentiation--into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vasoconstriction causes migraine aura via energy deficiency, whereas in the neuronal theory of Leão and Morison, spreading depression (SD) initiates the aura. Recently, it has been shown that the cerebrovascular constrictor endothelin-1 (ET-1) elicits SD when applied to the cortical surface, a finding that could provide a bridge between the vascular and the neuronal theories of migraine aura. Several arguments support the notion that ET-1-induced SD results from local vasoconstriction, but definite proof is missing. If ET-1 induces SD via vasoconstriction/ischemia, then neuronal damage is likely to occur, contrasting with the fact that SD in the otherwise normal cortex is not associated with any lesion. To test this hypothesis, we have performed a comprehensive histologic study of the effects of ET-1 when applied topically to the cerebral cortex of halothane-anesthetized rats. Our assessment included histologic stainings and immunohistochemistry for glial fibrillary acidic protein, heat shock protein 70, and transferase dUTP nick-end labeling assay. During ET-1 application, we recorded (i) subarachnoid direct current (DC) electroencephalogram, (ii) local cerebral blood flow by laser-Doppler flowmetry, and (iii) changes of oxyhemoglobin and deoxyhemoglobin by spectroscopy. At an ET-1 concentration of 1 muM, at which only 6 of 12 animals generated SD, a microarea with selective neuronal death was found only in those animals demonstrating SD. In another five selected animals, which had not shown SD in response to ET-1, SD was triggered at a second cranial window by KCl and propagated from there to the window exposed to ET-1. This treatment also resulted in a microarea of neuronal damage. In contrast, SD invading from outside did not induce neuronal damage in the absence of ET-1 (n = 4) or in the presence of ET-1 if ET-1 was coapplied with BQ-123, an ET(A) receptor antagonist (n = 4). In conclusion, SD in presence of ET-1 induced a microarea of selective neuronal necrosis no matter where the SD originated. This effect of ET-1 appears to be mediated by the ET(A) receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IL-2 immunotherapy is an attractive treatment option for certain metastatic cancers. However, administration of IL-2 to patients can lead, by ill-defined mechanisms, to toxic adverse effects including severe pulmonary edema. Here, we show that IL-2-induced pulmonary edema is caused by direct interaction of IL-2 with functional IL-2 receptors (IL-2R) on lung endothelial cells in vivo. Treatment of mice with high-dose IL-2 led to efficient expansion of effector immune cells expressing high levels of IL-2Rbetagamma, including CD8(+) T cells and natural killer cells, which resulted in a considerable antitumor response against s.c. and pulmonary B16 melanoma nodules. However, high-dose IL-2 treatment also affected immune cell lineage marker-negative CD31(+) pulmonary endothelial cells via binding to functional alphabetagamma IL-2Rs, expressed at low to intermediate levels on these cells, thus causing pulmonary edema. Notably, IL-2-mediated pulmonary edema was abrogated by a blocking antibody to IL-2Ralpha (CD25), genetic disruption of CD25, or the use of IL-2Rbetagamma-directed IL-2/anti-IL-2 antibody complexes, thereby interfering with IL-2 binding to IL-2Ralphabetagamma(+) pulmonary endothelial cells. Moreover, IL-2/anti-IL-2 antibody complexes led to vigorous activation of IL-2Rbetagamma(+) effector immune cells, which generated a dramatic antitumor response. Thus, IL-2/anti-IL-2 antibody complexes might improve current strategies of IL-2-based tumor immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that spatially selective inversion and saturation can be achieved by concatenation of RF pulses with lower flip angles. A concatenation rule which enables global doubling of the flip angle of any given excitation pulse applied to initial z magnetization is proposed. In this fashion, the selectivity of the single pulse is preserved, making the high selectivity achievable in the low flip-angle regime available for inversion and large flip-angle saturation purposes. The profile quality achievable with exemplary concatenated pulses is investigated in comparison with adiabatic inversion. It is verified that by using concatenated inversion in the transfer insensitive labeling technique (TILT), the MT artifact is suppressed. Copyright 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Providing analgesia without suppressing motor or sensory function is a challenge for regional anesthesia and postoperative pain management. Resiniferatoxin (RTX), an ultrapotent agonist for transient receptor potential subtype-1 (TRPV1) can produce this selective blockade, as TRPV1 is selectively expressed on nociceptors. Futhermore, after peripheral nerve injury, spontaneous ectopic activity arises from all types of nerve fibers that can affect spinal neurons and glial cells. The goal of the present experiment is to determine whether spontaneous activity generated in C-fibers or in both A&C-fibers is required for microglia activation. Method: We applied RTX (0.01%) or bupivacaine microspheres to the sciatic nerve of rats to block the conduction of C-fibers or A&C-fibers, respectively, before spared nerve injury (SNI). Behavior was tested and all the rats were sacrificed 2 days later; immunohistochemistry was performed on their spinal cord for mitogen-activated protein kinase (MAPK) p38, bromodeoxyuridine (BrdU, marker of proliferation) and Iba1 (microglial marker). Result: At day 2 after SNI robust mechanical allodynia and p38 activation in spinal microglia were documented. There was also a substantial cell proliferation in the spinal cord, all proliferating cells (BrdU+) being microglia (Iba1+). RTX blocked heat sensitivity and produced heat hypoalgesia without affecting mechanical allodynia and motor function. Microglial proliferation and p38 activation in the spinal cord were not affected by RTX (p >0.05). In contrast, a complete sensory and motor blockade was seen with bupivacaine which also significantly inhibited p38 activation and microglial proliferation in the spinal cord (p <0.05). Conclusion: We conclude that (1) RTX can provide a selective nociceptive blockade but that (2) blocking only nociceptive fibers does not impair the development of mechanical allodynia and microglia activation. Therefore (3) if microglia activation is important for chronic pain development then specific nociceptive blockade won't be sufficient to prevent it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today, Alzheimer's disease (AD) is one of the most important age-related neurodegenerative diseases, but its etiology remains still unknown. Since the discovery that the hallmark structures of this disease i.e. the formation of amyloid fibers could be the product of ubiquitin-mediated protein degradation defects, it has become clear that the ubiquitin-proteasome system (UPS), usually essential for protein repair, turnover and degradation, is perturbed in this disease. Different aspects of normal and pathological aging are discussed with respect to protein repair and degradation via the UPS, as well as consequences of a deficit in the UPS in AD. Selective protein oxidation may cause protein damage, or protein mutations may induce a dysfunction of the proteasome. Such events eventually lead to activation of cell death pathways and to an aberrant aggregation or incorporation of ubiquitinated proteins into hallmark structures. Aggresome formation is also observed in other neurodegenerative diseases, suggesting that an activation of similar mechanisms must occur in neurodegeneration as a basic phenomenon. It is essential to discuss therapeutic ways to investigate the UPS dysfunction in the human brain and to identify specific targets to hold or stop cell decay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many nuclear hormone receptors are involved in the regulation of skin homeostasis. However, their role in the epithelial compartment of the skin in stress situations, such as skin healing, has not been addressed yet. The healing of a skin wound after an injury involves three major cell types: immune cells, which are recruited to the wound bed; dermal fibroblasts; and epidermal and hair follicle keratinocytes. Our previous studies have revealed important but nonredundant roles of PPARalpha and beta/delta in the reparation of the skin after a mechanical injury in the adult mouse. However, the mesenchymal or epithelial cellular compartment in which PPARalpha and beta/delta play a role could not be determined in the null mice used, which have a germ line PPAR gene invalidation. In the present work, the role of PPARalpha was studied in keratinocytes, using transgenic mice that express a PPARalpha mutant with dominant-negative (dn) activity specifically in keratinocytes. This dn PPARalpha lacks the last 13 C terminus amino acids, binds to a PPARalpha agonist, but is unable to release the nuclear receptor corepressor and to recruit the coactivator p300. When selectively expressed in keratinocytes of transgenic mice, dn PPARalphaDelta13 causes a delay in the healing of skin wounds, accompanied by an exacerbated inflammation. This phenotype, which is similar to that observed in PPARalpha null mice, strongly suggests that during skin healing, PPARalpha is required in keratinocytes rather than in other cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant growth and development are particularly sensitive to changes in the light environment and especially to vegetational shading. The shade-avoidance response is mainly controlled by the phytochrome photoreceptors. In Arabidopsis, recent studies have identified several related bHLH class transcription factors (PIF, for phytochrome-interacting factors) as important components in phytochrome signaling. In addition to a related bHLH domain, most of the PIFs contain an active phytochrome binding (APB) domain that mediates their interaction with light-activated phytochrome B (phyB). Here we show that PIF4 and PIF5 act early in the phytochrome signaling pathways to promote the shade-avoidance response. PIF4 and PIF5 accumulate to high levels in the dark, are selectively degraded in response to red light, and remain at high levels under shade-mimicking conditions. Degradation of these transcription factors is preceded by phosphorylation, requires the APB domain and is sensitive to inhibitors of the proteasome, suggesting that PIF4 and PIF5 are degraded upon interaction with light-activated phyB. Our data suggest that, in dense vegetation, which is rich in far-red light, shade avoidance is triggered, at least partially, as a consequence of reduced phytochrome-mediated degradation of transcription factors such as PIF4 and PIF5. Consistent with this idea, the constitutive shade-avoidance phenotype of phyB mutants partially reverts in the absence of PIF4 and PIF5

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neonatal treatment of A/J mice with DNP-Ficoll reduced or eliminated indirect anti-DNP PFC normally produced in response to adult challenge with DNP-keyhole limpet hemocyanin. The remaining direct anti-DNP PFC response was of low avidity. Spleen cells from neonatal A/J mice inhibited the in vitro but not the in vivo response of adult spleen cells to DNP-Ficoll.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizotypy refers to a set of personality traits thought to reflect the subclinical expression of the signs and symptoms of schizophrenia. Here, we review the cognitive and brain functional profile associated with high questionnaire scores in schizotypy. We discuss empirical evidence from the domains of perception, attention, memory, imagery and representation, language, and motor control. Perceptual deficits occur early and across various modalities. Whilst the neural mechanisms underlying visual impairments may be linked to magnocellular dysfunction, further effects may be seen downstream in higher cognitive functions. Cognitive deficits are observed in inhibitory control, selective and sustained attention, incidental learning and memory. In concordance with the cognitive nature of many of the aberrations of schizotypy, higher levels of schizotypy are associated with enhanced vividness and better performance on tasks of mental rotation. Language deficits seem most pronounced in higher-level processes. Finally, higher levels of schizotypy are associated with reduced performance on oculomotor tasks, resembling the impairments seen in schizophrenia. Some of these deficits are accompanied by reduced brain activation, akin to the pattern of hypoactivations in schizophrenia spectrum individuals. We conclude that schizotypy is a construct with apparent phenomenological overlap with schizophrenia and stable inter-individual differences that covary with performance on a wide range of perceptual, cognitive and motor tasks known to be impaired in schizophrenia. The importance of these findings lies not only in providing a fine-grained neurocognitive characterisation of a personality constellation known to be associated with real-life impairments, but also in generating hypotheses concerning the aetiology of schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor gamma (PPAR-gamma) plays a key role in adipocyte differentiation and insulin sensitivity. Its synthetic ligands, the thiazolidinediones (TZD), are used as insulin sensitizers in the treatment of type 2 diabetes. These compounds induce both adipocyte differentiation in cell culture models and promote weight gain in rodents and humans. Here, we report on the identification of a new synthetic PPARgamma antagonist, the phosphonophosphate SR-202, which inhibits both TZD-stimulated recruitment of the coactivator steroid receptor coactivator-1 and TZD-induced transcriptional activity of the receptor. In cell culture, SR-202 efficiently antagonizes hormone- and TZD-induced adipocyte differentiation. In vivo, decreasing PPARgamma activity, either by treatment with SR-202 or by invalidation of one allele of the PPARgamma gene, leads to a reduction of both high fat diet-induced adipocyte hypertrophy and insulin resistance. These effects are accompanied by a smaller size of the adipocytes and a reduction of TNFalpha and leptin secretion. Treatment with SR-202 also dramatically improves insulin sensitivity in the diabetic ob/ob mice. Thus, although we cannot exclude that its actions involve additional signaling mechanisms, SR-202 represents a new selective PPARgamma antagonist that is effective both in vitro and in vivo. Because it yields both antiobesity and antidiabetic effects, SR-202 may be a lead for new compounds to be used in the treatment of obesity and type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While developing a high-pressure liquid chromatography assay for cefepime in plasma, we observed significant drug degradation at 20 and 37 degrees C but not at 4 degrees C. This plasma-related degradation persisted after protein removal. This warrants caution regarding cefepime assays for pharmacokinetic and pharmacodynamic studies of cefepime in vitro and in vivo.