126 resultados para High calorie diet
Resumo:
Cardiovascular diseases are the principal cause of death in women in developed countries and are importantly promoted by hypertension. The salt sensitivity of blood pressure (BP) is considered as an important cardiovascular risk factor at any BP level. Preeclampsia is a hypertensive disorder of pregnancy that arises as a risk factor for cardiovascular diseases. This study measured the salt sensitivity of BP in women with a severe preeclampsia compared with women with no pregnancy hypertensive complications. Forty premenopausal women were recruited 10 years after delivery in a case-control study. Salt sensitivity was defined as an increase of >4 mm Hg in 24-hour ambulatory BP on a high-sodium diet. The ambulatory BP response to salt was significantly increased in women with a history of preeclampsia compared with that of controls. The mean (95% confidence interval) daytime systolic/diastolic BP increased significantly from 115 (109-118)/79 (76-82) mm Hg on low-salt diet to 123 (116-130)/80 (76-84) on a high-salt diet in women with preeclampsia, but not in the control group (from 111 [104-119]/77 [72-82] to 111 [106-116]/75 [72-79], respectively, P<0.05). The sodium sensitivity index (SSI=Δmean arterial pressure/Δurinary Na excretion×1000) was 51.2 (19.1-66.2) in women with preeclampsia and 6.6 (5.8-18.1) mm Hg/mol per day in controls (P=0.015). The nocturnal dip was blunted on a high-salt diet in women with preeclampsia. Our study shows that women who have developed preeclampsia are salt sensitive before their menopause, a finding that may contribute to their increased cardiovascular risk. Women with a history of severe preeclampsia should be targeted at an early stage for preventive measures of cardiovascular diseases.
Resumo:
La consommation actuelle de sel (chlorure de sodium) est très supérieure aux besoins physiologiques (1,5 g par jour, soit environ 550 mg par jour de sodium) dans la plupart des pays (> 8 g par jour). Les principales sources de sel sont les pains, les fromages, les produits dérivés de la viande et les plats précuisinés. En moyenne, une consommation élevée de sel est associée à une pression artérielle plus élevée. En Suisse, un adulte sur trois souffre d'hypertension artérielle. La moitié des accidents vasculaires cérébraux et des maladies cardiaques ischémiques sont attribuables à une pression artérielle trop élevée. L'Office fédéral de la santé publique conduit actuellement une stratégie visant à diminuer la consommation de sel dans la population suisse à moins de 5 g par jour sur le long terme (Salz Strategie 2008-2012). [Abstract] Current dietary salt (sodium chloride) intake largely exceeds physiological needs (about 1.5 g salt per day, or 550 mg sodium per day) in most countries (> 8 g salt per day). The main sources of dietar salt intake are breads, cheeses, products derived from meat and ready-to-eat meals. On average, a high-salt diet is associated with higher blood pressure levels. In Switzerland, one out of three adults suffers from arterial hypertension. Half of cerebrovascular events and ischaemic cardiac events are attributable to elevated blood pressure. The Swiss Federal Office of Public Health is currently running a strategy aiming at reducing dietary salt intake in the Swiss population to less than 5 g per day on the long run (Salz Strategie 2008-2012).
Resumo:
In vivo lipogenesis and thermogenesis were studied for 24 h after ingestion of 500 g of carbohydrate (CHO) in subjects who had consumed either a high-fat, a mixed, or a high-CHO diet during the 3-6 days preceding the test. CHO oxidation and conversion to fat was significantly less in the high-fat diet group (222 +/- 5 g) than in the mixed (300 +/- 13 g) or high-CHO diet (331 +/- 7 g) groups, resulting in a greater glycogen storage in the high-fat (278 +/- 6 g) than in the other two groups (197 +/- 11 and 170 +/- 2 g). Net lipogenesis occurred sooner and lasted longer in the high-CHO group, amounting to 0.8 +/- 0.5, 3.4 +/- 0.6, and 9 +/- 1 g of lipid synthesized in the high-fat, mixed, and high-CHO groups, respectively. The thermic effect of the CHO load was 5.2 +/- 0.5% on the high-fat, 6.5 +/- 0.4% on the mixed diet, and 8.6 +/- 0.4% on the high-CHO diet. Significant relationships were demonstrated between the postabsorptive nonprotein respiratory quotient and net lipogenesis after the CHO load (r = 0.82) and between net lipogenesis and the increase in energy expenditure (r = 0.71). It is concluded that the antecedent diet influences the amount of net lipogenesis and the magnitude of thermogenesis after a large CHO test meal. However, lipogenesis remains too limited even after such large CHO intakes to cause an increase in the body's fat content.
Resumo:
The increase in VLDL TAG concentration after ingestion of a high-fructose diet is more pronounced in men than in pre-menopausal women. We hypothesised that this may be due to a lower fructose-induced stimulation of de novo lipogenesis (DNL) in pre-menopausal women. To evaluate this hypothesis, nine healthy male and nine healthy female subjects were studied after ingestion of oral loads of fructose enriched with 13C6 fructose. Incorporation of 13C into breath CO2, plasma glucose and plasma VLDL palmitate was monitored to evaluate total fructose oxidation, gluconeogenesis and hepatic DNL, respectively. Substrate oxidation was assessed by indirect calorimetry. After 13C fructose ingestion, 44.0 (sd 3.2)% of labelled carbons were recovered in plasma glucose in males v. 41.9 (sd 2.3)% in females (NS), and 42.9 (sd 3.7)% of labelled carbons were recovered in breath CO2 in males v. 43.0 (sd 4.5)% in females (NS), indicating similar gluconeogenesis from fructose and total fructose oxidation in males and females. The area under the curve for 13C VLDL palmitate tracer-to-tracee ratio was four times lower in females (P < 0.05), indicating a lower DNL. Furthermore, lipid oxidation was significantly suppressed in males (by 16.4 (sd 5.2), P < 0.05), but it was not suppressed in females ( -1.3 (sd 4.7)%). These results support the hypothesis that females may be protected against fructose-induced hypertriglyceridaemia because of a lower stimulation of DNL and a lower suppression of lipid oxidation.
Resumo:
BACKGROUND: The visceral (VAT) and subcutaneous (SCAT) adipose tissues play different roles in physiology and obesity. The molecular mechanisms underlying their expansion in obesity and following body weight reduction are poorly defined. METHODOLOGY: C57Bl/6 mice fed a high fat diet (HFD) for 6 months developed low, medium, or high body weight as compared to normal chow fed mice. Mice from each groups were then treated with the cannabinoid receptor 1 antagonist rimonabant or vehicle for 24 days to normalize their body weight. Transcriptomic data for visceral and subcutaneous adipose tissues from each group of mice were obtained and analyzed to identify: i) genes regulated by HFD irrespective of body weight, ii) genes whose expression correlated with body weight, iii) the biological processes activated in each tissue using gene set enrichment analysis (GSEA), iv) the transcriptional programs affected by rimonabant. PRINCIPAL FINDINGS: In VAT, "metabolic" genes encoding enzymes for lipid and steroid biosynthesis and glucose catabolism were down-regulated irrespective of body weight whereas "structure" genes controlling cell architecture and tissue remodeling had expression levels correlated with body weight. In SCAT, the identified "metabolic" and "structure" genes were mostly different from those identified in VAT and were regulated irrespective of body weight. GSEA indicated active adipogenesis in both tissues but a more prominent involvement of tissue stroma in VAT than in SCAT. Rimonabant treatment normalized most gene expression but further reduced oxidative phosphorylation gene expression in SCAT but not in VAT. CONCLUSION: VAT and SCAT show strikingly different gene expression programs in response to high fat diet and rimonabant treatment. Our results may lead to identification of therapeutic targets acting on specific fat depots to control obesity.
Resumo:
BACKGROUND: In mice, a partial loss of function of the epithelial sodium channel (ENaC), which regulates sodium excretion in the distal nephron, causes pseudohypoaldosteronism, a salt-wasting syndrome. The purpose of the present experiments was to examine how alpha ENaC knockout heterozygous (+/-) mice, which have only one allele of the gene encoding for the alpha subunit of ENaC, control their blood pressure (BP) and sodium balance. METHODS: BP, urinary electrolyte excretion, plasma renin activity, and urinary adosterone were measured in wild-type (+/+) and heterozygous (+/-) mice on a low, regular, or high sodium diet. In addition, the BP response to angiotensin II (Ang II) and to Ang II receptor blockade, and the number and affinity of Ang II subtype 1 (AT1) receptors in renal tissue were analyzed in both mouse strains on the three diets. RESULTS: In comparison with wild-type mice (+/+), alpha ENaC heterozygous mutant mice (+/-) showed an intact capacity to maintain BP and sodium balance when studied on different sodium diets. However, no change in plasma renin activity was found in response to changes in sodium intake in alpha ENaC +/- mice. On a normal salt diet, heterozygous mice had an increased vascular responsiveness to exogenous Ang II (P < 0.01). Moreover, on a normal and low sodium intake, these mice exhibited an increase in the number of AT1 receptors in renal tissues; their BP lowered markedly during the Ang II receptor blockade (P < 0.01) and there was a clear tendency for an increase in urinary aldosterone excretion. CONCLUSIONS: alpha ENaC heterozygous mice have developed an unusual mechanism of compensation leading to an activation of the renin-angiotensin system, that is, the up-regulation of AT1 receptors. This up-regulation may be due to an increase in aldosterone production.
Resumo:
Plasma urate levels are higher in humans than rodents (240-360 vs. â^¼30 μM) because humans lack the liver enzyme uricase. High uricemia in humans may protect against oxidative stress, but hyperuricemia also associates with the metabolic syndrome, and urate and uric acid can crystallize to cause gout and renal dysfunctions. Thus, hyperuricemic animal models to study urate-induced pathologies are needed. We recently generated mice with liver-specific ablation of Glut9, a urate transporter providing access of urate to uricase (LG9KO mice). LG9KO mice had moderately high uricemia (â^¼120 μM). To further increase their uricemia, here we gavaged LG9KO mice for 3 days with inosine, a urate precursor; this treatment was applied in both chow- and high-fat-fed mice. In chow-fed LG9KO mice, uricemia peaked at 300 μM 2 h after the first gavage and normalized 24 h after the last gavage. In contrast, in high-fat-fed LG9KO mice, uricemia further rose to 500 μM. Plasma creatinine strongly increased, indicating acute renal failure. Kidneys showed tubule dilation, macrophage infiltration, and urate and uric acid crystals, associated with a more acidic urine. Six weeks after inosine gavage, plasma urate and creatinine had normalized. However, renal inflammation, fibrosis, and organ remodeling had developed despite the disappearance of urate and uric acid crystals. Thus, hyperuricemia and high-fat diet feeding combined to induce acute renal failure. Furthermore, a sterile inflammation caused by the initial crystal-induced lesions developed despite the disappearance of urate and uric acid crystals.
Resumo:
Children conceived by assisted reproductive technologies (ART) display a level of vascular dysfunction similar to that seen in children of mothers with preeclamspia. The long-term consequences of ART-associated vascular disorders are unknown and difficult to investigate in healthy children. Here, we found that vasculature from mice generated by ART display endothelial dysfunction and increased stiffness, which translated into arterial hypertension in vivo. Progeny of male ART mice also exhibited vascular dysfunction, suggesting underlying epigenetic modifications. ART mice had altered methylation at the promoter of the gene encoding eNOS in the aorta, which correlated with decreased vascular eNOS expression and NO synthesis. Administration of a deacetylase inhibitor to ART mice normalized vascular gene methylation and function and resulted in progeny without vascular dysfunction. The induction of ART-associated vascular and epigenetic alterations appeared to be related to the embryo environment; these alterations were possibly facilitated by the hormonally stimulated ovulation accompanying ART. Finally, ART mice challenged with a high-fat diet had roughly a 25% shorter life span compared with control animals. This study highlights the potential of ART to induce vascular dysfunction and shorten life span and suggests that epigenetic alterations contribute to these problems.
Resumo:
The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, the mTOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism.
Resumo:
BACKGROUND: Both nutritional and genetic factors are involved in the pathogenesis of nonalcoholic fatty liver disease and insulin resistance. OBJECTIVE: The aim was to assess the effects of fructose, a potent stimulator of hepatic de novo lipogenesis, on intrahepatocellular lipids (IHCLs) and insulin sensitivity in healthy offspring of patients with type 2 diabetes (OffT2D)--a subgroup of individuals prone to metabolic disorders. DESIGN: Sixteen male OffT2D and 8 control subjects were studied in a crossover design after either a 7-d isocaloric diet or a hypercaloric high-fructose diet (3.5 g x kg FFM(-1) x d(-1), +35% energy intake). Hepatic and whole-body insulin sensitivity were assessed with a 2-step hyperinsulinemic euglycemic clamp (0.3 and 1.0 mU x kg(-1) x min(-1)), together with 6,6-[2H2]glucose. IHCLs and intramyocellular lipids (IMCLs) were measured by 1H-magnetic resonance spectroscopy. RESULTS: The OffT2D group had significantly (P < 0.05) higher IHCLs (+94%), total triacylglycerols (+35%), and lower whole-body insulin sensitivity (-27%) than did the control group. The high-fructose diet significantly increased IHCLs (control: +76%; OffT2D: +79%), IMCLs (control: +47%; OffT2D: +24%), VLDL-triacylglycerols (control: +51%; OffT2D: +110%), and fasting hepatic glucose output (control: +4%; OffT2D: +5%). Furthermore, the effects of fructose on VLDL-triacylglycerols were higher in the OffT2D group (group x diet interaction: P < 0.05). CONCLUSIONS: A 7-d high-fructose diet increased ectopic lipid deposition in liver and muscle and fasting VLDL-triacylglycerols and decreased hepatic insulin sensitivity. Fructose-induced alterations in VLDL-triacylglycerols appeared to be of greater magnitude in the OffT2D group, which suggests that these individuals may be more prone to developing dyslipidemia when challenged by high fructose intakes. This trial was registered at clinicaltrials.gov as NCT00523562.
Resumo:
Obesity is associated with chronic food intake disorders and binge eating. Food intake relies on the interaction between homeostatic regulation and hedonic signals among which, olfaction is a major sensory determinant. However, its potential modulation at the peripheral level by a chronic energy imbalance associated to obese status remains a matter of debate. We further investigated the olfactory function in a rodent model relevant to the situation encountered in obese humans, where genetic susceptibility is juxtaposed on chronic eating disorders. Using several olfactory-driven tests, we compared the behaviors of obesity-prone Sprague-Dawley rats (OP) fed with a high-fat/high-sugar diet with those of obese-resistant ones fed with normal chow. In OP rats, we reported 1) decreased odor threshold, but 2) poor olfactory performances, associated with learning/memory deficits, 3) decreased influence of fasting, and 4) impaired insulin control on food seeking behavior. Associated with these behavioral modifications, we found a modulation of metabolism-related factors implicated in 1) electrical olfactory signal regulation (insulin receptor), 2) cellular dynamics (glucorticoids receptors, pro- and antiapoptotic factors), and 3) homeostasis of the olfactory mucosa and bulb (monocarboxylate and glucose transporters). Such impairments might participate to the perturbed daily food intake pattern that we observed in obese animals.
Resumo:
Insulin-like growth factor 2 (IGF2), produced and secreted by adult β-cells, functions as an autocrine activator of the β-cell insulin-like growth factor 1 receptor signaling pathway. Whether this autocrine activity of IGF2 plays a physiological role in β-cell and whole-body physiology is not known. Here, we studied mice with β-cell-specific inactivation of Igf2 (βIGF2KO mice) and assessed β-cell mass and function in aging, pregnancy, and acute induction of insulin resistance. We showed that glucose-stimulated insulin secretion (GSIS) was markedly reduced in old female βIGF2KO mice; glucose tolerance was, however, normal because of increased insulin sensitivity. While on a high-fat diet, both male and female βIGF2KO mice displayed lower GSIS compared with control mice, but reduced β-cell mass was observed only in female βIGF2KO mice. During pregnancy, there was no increase in β-cell proliferation and mass in βIGF2KO mice. Finally, β-cell mass expansion in response to acute induction of insulin resistance was lower in βIGF2KO mice than in control mice. Thus, the autocrine action of IGF2 regulates adult β-cell mass and function to preserve in vivo GSIS in aging and to adapt β-cell mass in response to metabolic stress, pregnancy hormones, and acute induction of insulin resistance.
Resumo:
L'ARN polymérase 3 transcrit un petit groupe de gènes fortement exprimés et impliqués dans plusieurs mécanismes moléculaires. Les ARNs de transfert ou ARNt représentent plus ou moins la moitié du transcriptome de l'ARN polymérase 3. Ils sont directement impliqués dans la traduction des protéines en agissant comme transporteurs d'acides aminés qui sont incorporés à la chaîne naissante de polypeptides. Chez des levures cultivées dans un milieu jusqu'à épuisement des nutriments, Maf1 réprime la transcription par l'ARN polymérase 3, favorisant ainsi l'économie énergétique cellulaire. Dans un modèle de cellules de mammifères, MAF1 réprime aussi la transcription de l'ARN polymérase 3 dans des conditions de stress, cependant il n'existe aucune donnée quant à son rôle chez un mammifère vivant. Pendant mon doctorat, j'ai utilisé une souris délétée pour le gène Maf1 afin de connaître les effets de ce gène chez un mammifère. Etonnamment, la souris Maf1-‐/-‐ est résistante à l'obésité même si celle-‐ci est nourrie avec une nourriture riche en matières grasses. Des études moléculaires et de métabolomiques ont montré qu'il existe des cycles futiles de production et dégradation des lipides et des ARNt, ce qui entraîne une augmentation de la dépense énergique et favorise la résistance à l'obésité. En plus de la caractérisation de la souris Maf1-‐/-‐, pendant ma thèse j'ai également développé une méthode afin de normaliser les données de ChIP-‐sequencing. Cette méthode est fondée sur l'utilisation d'un contrôle interne, représenté ici par l'ajout d'une quantité fixe de chromatine provenant d'un organisme différent de celui étudié. La méthode a amélioré considérablement la reproductibilité des valeurs entre réplicas biologiques. Elle a aussi révélé des différences entre échantillons issus de conditions différentes. Une occupation supérieure de l'ARN polymérase 3 sur les gènes Pol 3 chez les souris Maf1 KO entraîne une augmentation du niveau de précurseurs d'ARNt, ayant pour effet probable la saturation de la machinerie de maturation des ARNt. En effet, chez les souris Maf1 KO, le pourcentage d'ARNt modifiés est plus faible que chez les souris type sauvage. Ce déséquilibre entre le niveau de précurseurs et d'ARNt matures entraîne une diminution de la traduction protéique. Ces résultats ont permis d'identifier de nouvelles fonctions pour la protéine MAF1, comme étant une protéine régulatrice à la fois de la transcription mais aussi de la traduction et en étant un cible potentielle au traitement à l'obésité. -- RNA polymerase III (Pol 3) transcribes a small set of highly expressed genes involved in different molecular mechanisms. tRNAs account for almost half of the Pol 3 transcriptome and are involved in translation, bringing a new amino into the nascent polypeptide chain. In yeast, under nutrient deprivation, Maf1 acts for cell energetic economy by repressing Pol 3 transcription. In mammalian cells, MAF1 also represses Pol 3 activity under conditions of serum deprivation or DNA damages but nothing is known about its role in a mammalian organism. During my thesis studies, I used a Maf1 KO mouse model to characterize the effects of Maf1 deletion in a living animal. Surprisingly, the MAF1 KO mouse developed an unexpected phenotype, being resistant to high fat diet-‐induced obesity and displaying an extended lifespan. Molecular and metabolomics characterizations revealed futile cycles of lipids and tRNAs, which are produced and immediately degraded, which increases energy consumption in the Maf1 KO mouse and probably explains in part the protection to obesity. Additionally to the mouse characterization, I also developed a method to normalize ChIP-‐seq data, based on the addition of a foreign chromatin to be used as an internal control. The method improved reproducibility between replicates and revealed differences of Pol 3 occupancy between WT and Maf1 KO samples that were not seen without normalization to the internal control. I then established that increased Pol 3 occupancy in the Maf1 KO mouse liver was associated with increased levels of tRNA precursor but not of mature tRNAs, the effective molecules involved in translation. The overproduction of precursor tRNAs associated with the deletion of Maf1 apparently overwhelms the tRNA processing machinery as the Maf1 KO mice have lower levels of fully modified tRNAs. This maturation defect directly impacts on translation efficiency as polysomic fractions and newly synthetized protein levels were reduced in the liver of the Maf1 KO mouse. Altogether, these results indicate new functions for MAF1, a regulator of both transcription and translation as well as a potential target for obesity treatment.
Resumo:
Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis.
Resumo:
BACKGROUND: Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown. OBJECTIVE: We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids. DESIGN: Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral (13)C-labeled fructose load (0.75 g/kg), and their total fructose oxidation ((13)CO2 production), fructose storage (fructose ingestion minus (13)C-fructose oxidation), fructose conversion into blood (13)C glucose (gluconeogenesis from fructose), blood VLDL-(13)C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then fructose condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)]. RESULTS: Fructose oxidation was significantly (P < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (P < 0.001). Fructose conversion into blood (13)C glucose, VLDL-(13)C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions. CONCLUSIONS: Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish fructose conversion into glucose or its incorporation into VLDL triglycerides. This trial was registered at clinicaltrials.gov as NCT01866215.