133 resultados para Computer Modelling
Resumo:
Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data.
Resumo:
Introduction: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on measurement of blood concentrations. Maintaining concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. In the last decades computer programs have been developed to assist clinicians in this assignment. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Method: Literature and Internet search was performed to identify software. All programs were tested on common personal computer. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software's characteristics. Numbers of drugs handled vary widely and 8 programs offer the ability to the user to add its own drug model. 10 computer programs are able to compute Bayesian dosage adaptation based on a blood concentration (a posteriori adjustment) while 9 are also able to suggest a priori dosage regimen (prior to any blood concentration measurement), based on individual patient covariates, such as age, gender, weight. Among those applying Bayesian analysis, one uses the non-parametric approach. The top 2 software emerging from this benchmark are MwPharm and TCIWorks. Other programs evaluated have also a good potential but are less sophisticated (e.g. in terms of storage or report generation) or less user-friendly.¦Conclusion: Whereas 2 integrated programs are at the top of the ranked listed, such complex tools would possibly not fit all institutions, and each software tool must be regarded with respect to individual needs of hospitals or clinicians. Interest in computing tool to support therapeutic monitoring is still growing. Although developers put efforts into it the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capacity of data storage and report generation.
Resumo:
Objectives: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on blood concentrations measurement. Maintaining concentrations within a target range requires pharmacokinetic (PK) and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Methods: Literature and Internet were searched to identify software. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software characteristics. Numbers of drugs handled vary from 2 to more than 180, and integration of different population types is available for some programs. Nevertheless, 8 programs offer the ability to add new drug models based on population PK data. 10 computer tools incorporate Bayesian computation to predict dosage regimen (individual parameters are calculated based on population PK models). All of them are able to compute Bayesian a posteriori dosage adaptation based on a blood concentration while 9 are also able to suggest a priori dosage regimen, only based on individual patient covariates. Among those applying Bayesian analysis, MM-USC*PACK uses a non-parametric approach. The top 2 programs emerging from this benchmark are MwPharm and TCIWorks. Others programs evaluated have also a good potential but are less sophisticated or less user-friendly.¦Conclusions: Whereas 2 software packages are ranked at the top of the list, such complex tools would possibly not fit all institutions, and each program must be regarded with respect to individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Although interest in TDM tools is growing and efforts were put into it in the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capability of data storage and automated report generation.
Resumo:
Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.
Resumo:
Accurate prediction of transcription factor binding sites is needed to unravel the function and regulation of genes discovered in genome sequencing projects. To evaluate current computer prediction tools, we have begun a systematic study of the sequence-specific DNA-binding of a transcription factor belonging to the CTF/NFI family. Using a systematic collection of rationally designed oligonucleotides combined with an in vitro DNA binding assay, we found that the sequence specificity of this protein cannot be represented by a simple consensus sequence or weight matrix. For instance, CTF/NFI uses a flexible DNA binding mode that allows for variations of the binding site length. From the experimental data, we derived a novel prediction method using a generalised profile as a binding site predictor. Experimental evaluation of the generalised profile indicated that it accurately predicts the binding affinity of the transcription factor to natural or synthetic DNA sequences. Furthermore, the in vitro measured binding affinities of a subset of oligonucleotides were found to correlate with their transcriptional activities in transfected cells. The combined computational-experimental approach exemplified in this work thus resulted in an accurate prediction method for CTF/NFI binding sites potentially functioning as regulatory regions in vivo.
Resumo:
Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Computer assisted cognitive remediation (CACR) was demonstrated to be efficient in improving cognitive deficits in adults with psychosis. However, scarce studies explored the outcome of CACR in adolescents with psychosis or at high risk. Aims: To investigate the effectiveness of a computer-assisted cognitive remediation (CACR) program in adolescents with psychosis or at high risk. Method: Intention to treat analyses included 32 adolescents who participated in a blinded 8-week randomized controlled trial of CACR treatment compared to computer games (CG). Cognitive abilities, symptoms and psychosocial functioning were assessed at baseline and posttreatment. Results: Improvement in visuospatial abilities was significantly greater in the CACR group than in CG. Other cognitive functions, psychotic symptoms and psychosocial functioning improved significantly, but at similar rates, in the two groups. Conclusion: CACR can be successfully administered in this population; it proved to be effective over and above CG for the most intensively trained cognitive ability.