370 resultados para Antigens, Differentiation, Myelomonocytic
Resumo:
Regions under tropical rainforest cover, such as central Africa and Brazil are characterised by degradation and dismantling of old ferricrete structures. In southern Cameroon, these processes are relayed by present-day ferruginous accumulation soil facies, situated on the middle and the lower part of hill slopes. These facies become progressively harder towards the surface, containing from bottom to top, mainly kaolinite, kaolinite-goethite and Al-rich goethite-hematite, and are discontinuous to the relictic hematite-dominated ferricrete that exist in the upper part of the hill slope. These features were investigated in terms of geochemical differentiation of trace elements. It appears that, in contrast to the old ferricrete facies, the current ferruginous accumulations are enriched in transitional trace elements (V, Cr, Co, Y, Sc) and Ph, while alkali-earth elements are less differentiated. This recent chemical accumulation is controlled both by intense weathering of the granodiorite bedrock and by mobilisation of elements previously accumulated in the old ferricrete. The observed processes are clearly linked to the present-day humid climate with rising groundwater tables. They slowly replace the old ferricretes formed during Cretaceous time under more seasonal climatic conditions, representing an instructive case of continuos global change. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Whereas most T cells arise in the thymus, a distinct lineage of extrathymically derived T cells is present in the gut mucosa. The developmental origin of extrathymic T cells is poorly understood. We show here that Notch-1, a transmembrane receptor involved in T cell fate specification of bipotential T/B precursors in the thymus, is absolutely required for the development of extrathymic (as well as thymus-derived) mature T cells in the intestinal epithelium. In the absence of Notch-1, CD117(+) T cell precursors are relatively more abundant in the gut than the thymus, whereas immature B cells accumulate in the thymus but not the gut. Collectively, these data demonstrate that Notch-1 is essential for both thymic and extrathymic T cell fate specification and further suggest that bipotential T/B precursors that do not receive a Notch-1 signal adopt a B cell fate in the thymus but become developmentally arrested in the gut.
Resumo:
Peptide signaling presumably occupies a central role in plant development, yet only few concrete examples of receptor-ligand pairs that act in the context of specific differentiation processes have been described. Here we report that second-site null mutations in the Arabidopsis leucine-rich repeat receptor-like kinase gene barely any meristem 3 (BAM3) perfectly suppress the postembryonic root meristem growth defect and the associated perturbed protophloem development of the brevis radix (brx) mutant. The roots of bam3 mutants specifically resist growth inhibition by the CLAVATA3/ENDOSPERM SURROUNDING REGION 45 (CLE45) peptide ligand. WT plants transformed with a construct for ectopic overexpression of CLE45 could not be recovered, with the exception of a single severely dwarfed and sterile plant that eventually died. By contrast, we obtained numerous transgenic bam3 mutants transformed with the same construct. These transgenic plants displayed a WT phenotype, however, supporting the notion that CLE45 is the likely BAM3 ligand. The results correlate with the observation that external CLE45 application represses protophloem differentiation in WT, but not in bam3 mutants. BAM3, BRX, and CLE45 are expressed in a similar spatiotemporal trend along the developing protophloem, up to the end of the transition zone. Induction of BAM3 expression upon CLE45 application, ectopic overexpression of BAM3 in brx root meristems, and laser ablation experiments suggest that intertwined regulatory activity of BRX, BAM3, and CLE45 could be involved in the proper transition of protophloem cells from proliferation to differentiation, thereby impinging on postembryonic growth capacity of the root meristem.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a marked, rapid, and sustained increase in the activity of the astrocyte-specific enzyme glutamine synthetase (GS). This effect was accompanied by a small increase in RNA synthesis and a progressive reduction in DNA synthesis. Only mitotically active cultures were responsive to PMA treatments. Since in aggregate cultures astrocytes are the preponderant cell type, both in number and mitotic activity, it can be concluded that PMA induces and/or enhances the terminal differentiation of astrocytes. The developmental expression of GS was also greatly stimulated by mezerein, a potent nonphorbol tumor promoter, but not by 4 alpha-phorbol 12,13-didecanoate, a nonpromoting phorbol ester. Since both tumor promoters, PMA and mezerein, are potent and specific activators of C-kinase, it is suggested that C-kinase plays a regulatory role in the growth and differentiation of normal astrocytes.
Resumo:
Although tumor-specific CD8 T-cell responses often develop in cancer patients, they rarely result in tumor eradication. We aimed at studying directly the functional efficacy of tumor-specific CD8 T cells at the site of immune attack. Tumor lesions in lymphoid and nonlymphoid tissues (metastatic lymph nodes and soft tissue/visceral metastases, respectively) were collected from stage III/IV melanoma patients and investigated for the presence and function of CD8 T cells specific for the tumor differentiation antigen Melan-A/MART-1. Comparative analysis was conducted with peripheral blood T cells. We provide evidence that in vivo-priming selects, within the available naive Melan-A/MART-1-specific CD8 T-cell repertoire, cells with high T-cell receptor avidity that can efficiently kill melanoma cells in vitro. In vivo, primed Melan-A/MART-1-specific CD8 T cells accumulate at high frequency in both lymphoid and nonlymphoid tumor lesions. Unexpectedly, however, whereas primed Melan-A/MART-1-specific CD8 T cells that circulate in the blood display robust inflammatory and cytotoxic functions, those that reside in tumor lesions (particularly in metastatic lymph nodes) are functionally tolerant. We show that both the lymph node and the tumor environments blunt T-cell effector functions and offer a rationale for the failure of tumor-specific responses to effectively counter tumor progression.
Resumo:
The infection mechanism of vaccinia virus is largely unknown. Neither the attachment protein of extracellular enveloped virus (EEV), the biologically relevant infectious form of the virus, nor its cellular receptor has been identified. Surprisingly, all former attempts using antibodies to block EEV infection of cells in vitro had failed. Here, we report the production of an anti-envelope hyperimmune serum with EEV neutralizing activity and show that a polyclonal antiserum against the extraviral domain of protein B5R also inhibited EEV infection. In vivo, mice vaccinated with B5R protein were protected against a lethal vaccinia virus challenge. This protectivity is likely to be mediated by neutralizing antibodies. Protein A33R, but not A34R and A36R, also proved to be protective in active and passive vaccination experiments. However, in contrast to B5R, A33R protectivity did not correlate with antibody titers. Because anti-A33R antibodies did not neutralize EEV in vitro, the protectivity mediated by A33R protein probably involves a mechanism different from simple antibody binding. Taken together, our results suggest that antibodies to a specific protective epitope or epitopes on protein B5R are able to prevent EEV infection. The protein encoded by the B5R gene is therefore likely to play a crucial role in the initial steps of vaccinia virus infection-binding to a host cell and entry into its cytoplasm.
Resumo:
Both the underlying molecular mechanisms and the kinetics of TCR repertoire selection following vaccination against tumor Ags in humans have remained largely unexplored. To gain insight into these questions, we performed a functional and structural longitudinal analysis of the TCR of circulating CD8(+) T cells specific for the HLA-A2-restricted immunodominant epitope from the melanocyte differentiation Ag Melan-A in a melanoma patient who developed a vigorous and sustained Ag-specific T cell response following vaccination with the corresponding synthetic peptide. We observed an increase in functional avidity of Ag recognition and in tumor reactivity in the postimmune Melan-A-specific populations as compared with the preimmune blood sample. Improved Ag recognition correlated with an increase in the t(1/2) of peptide/MHC interaction with the TCR as assessed by kinetic analysis of A2/Melan-A peptide multimer staining decay. Ex vivo analysis of the clonal composition of Melan-A-specific CD8(+) T cells at different time points during vaccination revealed that the response was the result of asynchronous expansion of several distinct T cell clones. Some of these T cell clones were also identified at a metastatic tumor site. Collectively, these data show that tumor peptide-driven immune stimulation leads to the selection of high-avidity T cell clones of increased tumor reactivity that independently evolve within oligoclonal populations.
Resumo:
The Spanish sand racer (Psammodromus hispanicus) has been recently split into three distinct species: P. hispanicus, P. edwardsianus, and P. occidentalis. Some morphological differences have been reported but there is as yet no description allowing unambiguous identification of the three species. Here, we describe differentiation in body measurements, scalation traits, and colour traits as well as in the degree of sexual dimorphism. Our results show that P. edwardsianus can be easily distinguished by the presence of a supralabial scale below the subocular scale, which is absent in the other two species. Psammodromus hispanicus and P. occidentalis can be distinguished by the number of femoral pores, throat scales and ocelli, and the relative width of the anal scale. The degree of sexual size dimorphism and sexual colour dimorphism substantially differs among species, suggesting that different scenarios of sexual and natural selection may exist for each species. Moreover, sexually selected traits (nuptial colouration, ocelli, and femoral pores) significantly differ among species, suggesting that visual and chemical communication may also differ among species. Such differences could prevent reproduction and gene flow at secondary contact zones, potentially reinforcing isolation and speciation within this group of lizards.
Resumo:
Injection drug use before and after liver transplantation: a retrospective multicenter analysis on incidence and outcome. Clin Transplant 2009 DOI: 10.1111/j.1399-0012.2009.01121.x. Background and aims: Injecting drug use (IDU) before and after liver transplantation (LT) is poorly described. The aim of this study was to quantify relapse and survival in this population and to describe the causes of mortality after LT. Methods: Past injection drug users were identified from the LT listing protocols from four centers in Switzerland and France. Data on survival and relapse were collected and used for uni- and multivariate analysis. Results: Between 1988 and 2006, we identified 59 patients with a past history of IDU. The mean age at transplantation was 42.4 yr and the majority of patients were men (84.7%). The indication for LT was for the vast majority viral cirrhosis accounting for 91.5% of cases, while alcoholic cirrhosis was 5.1%. There were 16.9% of patients who had a substitution therapy before and 6.8% who continued after LT. Two patients (3.4%) relapsed into IDU after LT and died at 18 and 41 months. The mean follow-up was 51 months. Overall survival was 84%, 66%, and 61% at 1, 5, and 10 yr after transplantation. Conclusions: Documented IDU was rare in liver transplanted patients. Past IDU was not associated with poorer survival after LT, and relapse after LT occurred in 3.4%.
Resumo:
Protection from reactivation of persistent herpes virus infection is mediated by Ag-specific CD8 T cell responses, which are highly regulated by still poorly understood mechanisms. In this study, we analyzed differentiation and clonotypic dynamics of EBV- and CMV-specific T cells from healthy adults. Although these T lymphocytes included all subsets, from early-differentiated (EM/CD28(pos)) to late-differentiated (EMRA/CD28(neg)) stages, they varied in the sizes/proportions of these subsets. In-depth clonal composition analyses revealed TCR repertoires, which were highly restricted for CMV- and relatively diverse for EBV-specific cells. Virtually all virus-specific clonotypes identified in the EMRA/CD28(neg) subset were also found within the pool of less differentiated "memory" cells. However, striking differences in the patterns of dominance were observed among these subsets, because some clonotypes were selected with differentiation while others were not. Late-differentiated CMV-specific clonotypes were mostly characterized by TCR with lower dependency on CD8 coreceptor interaction. Yet all clonotypes displayed similar functional avidities, suggesting a compensatory role of CD8 in the clonotypes of lower TCR avidity. Importantly, clonotype selection and composition of each virus-specific subset upon differentiation was highly preserved over time, with the presence of the same dominant clonotypes at specific differentiation stages within a period of 4 years. Remarkably, clonotypic distribution was stable not only in late-differentiated but also in less-differentiated T cell subsets. Thus, T cell clonotypes segregate with differentiation, but the clonal composition once established is kept constant for at least several years. These findings reveal novel features of the highly sophisticated control of steady state protective T cell activity in healthy adults.
Resumo:
During fetal life, CD4(+)CD3(-) lymphoid tissue inducer (LTi) cells are required for lymph node and Peyer's patch development in mice. In adult animals, CD4(+)CD3(-) cells are found in low numbers in lymphoid organs. Whether adult CD4(+)CD3(-) cells are LTi cells and are generated and maintained through cytokine signals has not been directly addressed. In this study we show that adult CD4(+)CD3(-) cells adoptively transferred into neonatal CXCR5(-/-) mice induced the formation of intestinal lymphoid tissues, demonstrating for the first time their bona fide LTi function. Increasing IL-7 availability in wild-type mice either by IL-7 transgene expression or treatment with IL-7/anti-IL-7 complexes increased adult LTi cell numbers through de novo generation from bone marrow cells and increased the survival and proliferation of LTi cells. Our observations demonstrate that adult CD4(+)lineage(-) cells are LTi cells and that the availability of IL-7 determines the size of the adult LTi cell pool.