153 resultados para Phantom Surface
Resumo:
111 patients with acute leukemia, including 29 children, were classified according to the surface markers and cytochemistry of their blasts. The acute leukemias were separated into two majors groups (lymphoid and non-lymphoid) depending on the presence or absence of specific lymphoid markers. On the basis of these criteria a correlation of 94% with the hematological diagnosis was obtained. Acute lymphoblastic leukemia (ALL) was divisible into three sub-groups: 11 cases expressing T-cell specific markers were classified as T-ALL and 33 cases expressing the common ALL antigen (CALLA) as c-ALL. 18 of the latter expressed an additional marker, DSA (Daudi surface antigen), splitting c-ALL cases in two subgroups. Cytochemistry of the cases lacking specific surface markers (n = 67) served to diagnose 41 acute myeloid leukemia (AML) cases and 8 monoblastic leukemias. The remaining 18 cases could not be classified. The presence of absence of HLD-DR (Ia) antigens served to subdivide AML into two major subgroups. The prognostic significance of these new diagnostic splits is under active study.
Resumo:
Clin Microbiol Infect ABSTRACT: The aetiological diagnosis of community-acquired pneumonia (CAP) is challenging in children, and serological markers would be useful surrogates for epidemiological studies of pneumococcal CAP. We compared the use of anti-pneumolysin (Ply) antibody alone or with four additional pneumococcal surface proteins (PSPs) (pneumococcal histidine triad D (PhtD), pneumococcal histidine triad E (PhtE), LytB, and pneumococcal choline-binding protein A (PcpA)) as serological probes in children hospitalized with CAP. Recent pneumococcal exposure (positive blood culture for Streptococcus pneumoniae, Ply(+) blood PCR finding, and PSP seroresponse) was predefined as supporting the diagnosis of presumed pneumococcal CAP (P-CAP). Twenty-three of 75 (31%) children with CAP (mean age 33.7 months) had a Ply(+) PCR finding and/or a ≥2-fold increase of antibodies. Adding seroresponses to four PSPs identified 12 additional patients (35/75, 45%), increasing the sensitivity of the diagnosis of P-CAP from 0.44 (Ply alone) to 0.94. Convalescent anti-Ply and anti-PhtD antibody titres were significantly higher in P-CAP than in non P-CAP patients (446 vs. 169 ELISA Units (EU)/mL, p 0.031, and 189 vs. 66 EU/mL, p 0.044), confirming recent exposure. Acute anti-PcpA titres were three-fold lower (71 vs. 286 EU/mL, p <0.001) in P-CAP children. Regression analyses confirmed a low level of acute PcpA antibodies as the only independent predictor (p 0.002) of P-CAP. Novel PSPs facilitate the demonstration of recent pneumococcal exposure in CAP children. Low anti-PcpA antibody titres at admission distinguished children with P-CAP from those with CAP with a non-pneumococcal origin.
Simulations of action of DNA topoisomerases to investigate boundaries and shapes of spaces of knots.
Resumo:
The configuration space available to randomly cyclized polymers is divided into subspaces accessible to individual knot types. A phantom chain utilized in numerical simulations of polymers can explore all subspaces, whereas a real closed chain forming a figure-of-eight knot, for example, is confined to a subspace corresponding to this knot type only. One can conceptually compare the assembly of configuration spaces of various knot types to a complex foam where individual cells delimit the configuration space available to a given knot type. Neighboring cells in the foam harbor knots that can be converted into each other by just one intersegmental passage. Such a segment-segment passage occurring at the level of knotted configurations corresponds to a passage through the interface between neighboring cells in the foamy knot space. Using a DNA topoisomerase-inspired simulation approach we characterize here the effective interface area between neighboring knot spaces as well as the surface-to-volume ratio of individual knot spaces. These results provide a reference system required for better understanding mechanisms of action of various DNA topoisomerases.
Resumo:
During its life cycle, the protozoan parasite Leishmania major alternates from an intracellular amastigote form in the mammalian host to a flagellated promastigote form in the insect vector. The expression of the surface metalloprotease (PSP) during differentiation in vitro was investigated by Western and Northern blots, by immunoprecipitation of cells metabolically labeled with [35S]methionine or labeled at the surface with radioactive iodine, and by quantification of the proteolytic activity in substrate-containing polyacrylamide gels. We report that the surface metalloprotease is down-regulated at both the mRNA and the protein level in amastigotes, where it represents less than 1% of the equivalent proteolytic activity detected in promastigotes. A significant amount of mRNA is detected 4 hr after the onset of differentiation. The expression of the protease begins at that time and reaches steady state 8 hr later. The synthesis of PSP precedes the complete morphological differentiation to the promastigote stage and the appearance of the lipophosphoglycan, another major promastigote surface component. In contrast to PSP, a family of mercaptoethanol-activated proteases present in the amastigote exists only at a reduced level in the promastigote. The confinement of the surface metalloprotease to the insect stage of the parasite suggests that it has no physiological function in the parasitism maintenance of mammalian host macrophages.
Resumo:
Glycosyl phosphatidylinositol (GPI)-anchored proteins contain in their COOH-terminal region a peptide segment that is thought to direct glycolipid addition. This signal has been shown to require a pair of small amino acids positioned 10-12 residues upstream of an hydrophobic C-terminal domain. We analysed the contribution of the region separating the anchor acceptor site and the C-terminal hydrophobic segment by introducing amino acid deletions and substitutions in the spacer element of the GPI-anchored Thy-1 glycoprotein. Deletions of 7 amino acids in this region, as well as the introduction of 2 charged residues, prevented the glycolipid addition to Thy-1, suggesting that the length and the primary sequence of the spacer domain are important determinants in the signal directing GPI anchor transfer onto a newly synthesized polypeptide. Furthermore, we tested these rules by creating a truncated form of the normally transmembranous Herpes simplex virus I glycoprotein D (gDI) and demonstrating that when its C-terminal region displays all the features of a GPI-anchored protein, it is able to direct glycolipid addition onto another cell surface molecule.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.
Resumo:
Aim: When planning SIRT using 90Y microspheres, the partition model is used to refine the activity calculated by the body surface area (BSA) method to potentially improve the safety and efficacy of treatment. For this partition model dosimetry, accurate determination of mean tumor-to-normal liver ratio (TNR) is critical since it directly impacts absorbed dose estimates. This work aimed at developing and assessing a reliable methodology for the calculation of 99mTc-MAA SPECT/CT-derived TNR ratios based on phantom studies. Materials and methods: IQ NEMA (6 hot spheres) and Kyoto liver phantoms with different hot/background activity concentration ratios were imaged on a SPECT/CT (GE Infinia Hawkeye 4). For each reconstruction with the IQ phantom, TNR quantification was assessed in terms of relative recovery coefficients (RC) and image noise was evaluated in terms of coefficient of variation (COV) in the filled background. RCs were compared using OSEM with Hann, Butterworth and Gaussian filters, as well as FBP reconstruction algorithms. Regarding OSEM, RCs were assessed by varying different parameters independently, such as the number of iterations (i) and subsets (s) and the cut-off frequency of the filter (fc). The influence of the attenuation and diffusion corrections was also investigated. Furthermore, both 2D-ROIs and 3D-VOIs contouring were compared. For this purpose, dedicated Matlab© routines were developed in-house for automatic 2D-ROI/3D-VOI determination to reduce intra-user and intra-slice variability. Best reconstruction parameters and RCs obtained with the IQ phantom were used to recover corrected TNR in case of the Kyoto phantom for arbitrary hot-lesion size. In addition, we computed TNR volume histograms to better assess uptake heterogeneityResults: The highest RCs were obtained with OSEM (i=2, s=10) coupled with the Butterworth filter (fc=0.8). Indeed, we observed a global 20% RC improvement over other OSEM settings and a 50% increase as compared to the best FBP reconstruction. In any case, both attenuation and diffusion corrections must be applied, thus improving RC while preserving good image noise (COV<10%). Both 2D-ROI and 3D-VOI analysis lead to similar results. Nevertheless, we recommend using 3D-VOI since tumor uptake regions are intrinsically 3D. RC-corrected TNR values lie within 17% around the true value, substantially improving the evaluation of small volume (<15 mL) regions. Conclusions: This study reports the multi-parameter optimization of 99mTc MAA SPECT/CT images reconstruction in planning 90Y dosimetry for SIRT. In phantoms, accurate quantification of TNR was obtained using OSEM coupled with Butterworth and RC correction.
Resumo:
PURPOSE: In contrast to other human tumors, a repression of the cell-surface glycoprotein CD44 on neuroblastoma is a marker of aggressiveness that usually correlates to N-myc amplification. We thus compared the prognostic value of both markers in the initial staging of 121 children treated for neuroblastoma in collaborative institutions. METHODS: Frozen samples were analyzed by a rapid and well-standardized technique of immunostaining with monoclonal antibodies (MoAbs) against epitopes in the CD44 constant region. RESULTS: In this retrospective series, CD44 was expressed on 102 specimens and strongly correlated with favorable tumor stages and histology, younger age, and normal N-myc copy numbers. In univariate analysis, CD44 expression and normal N-myc were the most powerful markers of favorable clinical outcome (P < 10(-6) and chi 2 = 65.40 and P < 10(-6) and chi 2 = 42.56, respectively), but analysis of CD44 affords significant prognostic discrimination in subgroups of patients with or without N-myc-amplified tumors. In the subgroup of stage IV neuroblastomas, CD44 was the only significant prognostic marker (P < .02, chi 2 = 5.76), whereas N-myc status was not discriminant. In multivariate analysis of five factors, ie, N-myc amplification, CD44 expression, age, tumor stage, and histology, the only independent prognostic factors of event-free survival were CD44 expression and tumor stage. CONCLUSION: The analysis of CD44 cell-surface expression must be recommended as an additional biologic marker in the initial staging of the disease.
Resumo:
PURPOSE: To determine the lower limit of dose reduction with hybrid and fully iterative reconstruction algorithms in detection of endoleaks and in-stent thrombus of thoracic aorta with computed tomographic (CT) angiography by applying protocols with different tube energies and automated tube current modulation. MATERIALS AND METHODS: The calcification insert of an anthropomorphic cardiac phantom was replaced with an aortic aneurysm model containing a stent, simulated endoleaks, and an intraluminal thrombus. CT was performed at tube energies of 120, 100, and 80 kVp with incrementally increasing noise indexes (NIs) of 16, 25, 34, 43, 52, 61, and 70 and a 2.5-mm section thickness. NI directly controls radiation exposure; a higher NI allows for greater image noise and decreases radiation. Images were reconstructed with filtered back projection (FBP) and hybrid and fully iterative algorithms. Five radiologists independently analyzed lesion conspicuity to assess sensitivity and specificity. Mean attenuation (in Hounsfield units) and standard deviation were measured in the aorta to calculate signal-to-noise ratio (SNR). Attenuation and SNR of different protocols and algorithms were analyzed with analysis of variance or Welch test depending on data distribution. RESULTS: Both sensitivity and specificity were 100% for simulated lesions on images with 2.5-mm section thickness and an NI of 25 (3.45 mGy), 34 (1.83 mGy), or 43 (1.16 mGy) at 120 kVp; an NI of 34 (1.98 mGy), 43 (1.23 mGy), or 61 (0.61 mGy) at 100 kVp; and an NI of 43 (1.46 mGy) or 70 (0.54 mGy) at 80 kVp. SNR values showed similar results. With the fully iterative algorithm, mean attenuation of the aorta decreased significantly in reduced-dose protocols in comparison with control protocols at 100 kVp (311 HU at 16 NI vs 290 HU at 70 NI, P ≤ .0011) and 80 kVp (400 HU at 16 NI vs 369 HU at 70 NI, P ≤ .0007). CONCLUSION: Endoleaks and in-stent thrombus of thoracic aorta were detectable to 1.46 mGy (80 kVp) with FBP, 1.23 mGy (100 kVp) with the hybrid algorithm, and 0.54 mGy (80 kVp) with the fully iterative algorithm.
Resumo:
In this paper we propose an innovative methodology for automated profiling of illicit tablets bytheir surface granularity; a feature previously unexamined for this purpose. We make use of the tinyinconsistencies at the tablet surface, referred to as speckles, to generate a quantitative granularity profileof tablets. Euclidian distance is used as a measurement of (dis)similarity between granularity profiles.The frequency of observed distances is then modelled by kernel density estimation in order to generalizethe observations and to calculate likelihood ratios (LRs). The resulting LRs are used to evaluate thepotential of granularity profiles to differentiate between same-batch and different-batches tablets.Furthermore, we use the LRs as a similarity metric to refine database queries. We are able to derivereliable LRs within a scope that represent the true evidential value of the granularity feature. Thesemetrics are used to refine candidate hit-lists form a database containing physical features of illicittablets. We observe improved or identical ranking of candidate tablets in 87.5% of cases when granularityis considered.
Resumo:
The artificial dsRNA polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a potent adjuvant candidate for vaccination, as it strongly drives cell-mediated immunity. However, because of its effects on non-immune bystander cells, poly(I:C) administration may bear danger for the development of autoimmune diseases. Thus poly(I:C) should be applied in the lowest dose possible. We investigated microspheres carrying surface-assembled poly(I:C) as a two-in-one adjuvant formulation to stimulate maturation of monocyte-derived dendritic cells (MoDCs). Negatively charged polystyrene microspheres were equipped with a poly(ethylene glycol) corona through electrostatically driven surface assembly of a library of polycationic poly(l-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres in an aqueous poly(I:C) solution. Surface-assembled poly(I:C) exhibited a strongly enhanced efficacy to stimulate maturation of MoDCs by up to two orders of magnitude, as compared to free poly(I:C). Multiple phagocytosis events were the key factor to enhance the efficacy. The cytokine secretion pattern of MoDCs after exposure to surface-assembled poly(I:C) differed from that of free poly(I:C), while their ability to stimulate T cell proliferation was similar. Overall, phagocytic signaling plays an important role in defining the resulting immune response to such two-in-one adjuvant formulations.