102 resultados para Fractional laplacian
Resumo:
Schizophrenia is a complex psychiatric disorder characterized by disabling symptoms and cognitive deficit. Recent neuroimaging findings suggest that large parts of the brain are affected by the disease, and that the capacity of functional integration between brain areas is decreased. In this study we questioned (i) which brain areas underlie the loss of network integration properties observed in the pathology, (ii) what is the topological role of the affected regions within the overall brain network and how this topological status might be altered in patients, and (iii) how white matter properties of tracts connecting affected regions may be disrupted. We acquired diffusion spectrum imaging (a technique sensitive to fiber crossing and slow diffusion compartment) data from 16 schizophrenia patients and 15 healthy controls, and investigated their weighted brain networks. The global connectivity analysis confirmed that patients present disrupted integration and segregation properties. The nodal analysis allowed identifying a distributed set of brain nodes affected in the pathology, including hubs and peripheral areas. To characterize the topological role of this affected core, we investigated the brain network shortest paths layout, and quantified the network damage after targeted attack toward the affected core. The centrality of the affected core was compromised in patients. Moreover the connectivity strength within the affected core, quantified with generalized fractional anisotropy and apparent diffusion coefficient, was altered in patients. Taken together, these findings suggest that the structural alterations and topological decentralization of the affected core might be major mechanisms underlying the schizophrenia dysconnectivity disorder. Hum Brain Mapp, 36:354-366, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
The role of serum uric acid (SUA) in cardio-metabolic conditions has long been contentious. It is still unclear if SUA is an independent risk factor or marker of cardio-metabolic conditions and most observed associations are not necessarily causal. This study aimed to further understand and explore the causal role of SUA in cardio-metabolic conditions using genetic and non-genetic epidemiological methods in population-based data. In the first part of this study, we found moderate to high heritability estimates for SUA and fractional excretion of urate (FEUA) suggesting the role of genetic factors in the etiology of hyperuricemia. With regards to the role of SUA on inflammatory markers (IMs), a strong positive association of SUA with C-reactive protein (CRP) and a weaker positive association with tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) was observed, which was in part mediated by body mass index (BMI). These findings suggest that SUA may have a role in sterile inflammation. In view of the inconsistency surrounding the causal nature and direction of the relation between SUA and adiposity, we applied a bidirectional Mendelian randomization approach using genetic variants to decipher the association. The finding that elevated SUA is a consequence rather than a cause of adiposity was not totally unexpected and is compatible with the hypothesis that hyperinsulinemia, accompanying obesity, enhances renal proximal tubular reabsorption of uric acid. The fourth part of this study examined the relationship between SUA and blood pressure (BP) in young adults. The association between SUA and BP, significant only in females, was strongly attenuated upon adjustment for BMI. The possibility that BMI lies in the causal pathway may explain the attenuation observed in the associations of SUA with BP and IMs. Finally, a significant hockey-stick shaped association of SUA with social phobia in our data suggests a protective effect of SUA only up to a certain concentration. Although our study findings have shed some light on the uncertainty underlying the pathophysiology of SUA, more compelling evidence using longitudinal designs, randomized controlled trials and the use of robust genetic tools is warranted to increase our understanding of the clinical significance of SUA.
Resumo:
Background: Mammalian target of rapamycin (mTOR), a central regulator of cell growth, is found in two structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC)1 and mTORC2. The specific roles of each of these branches of mTOR signaling have not been dissected in the adult heart. In the present study, we aimed to bring new insights into the function of cardiac mTORC1-mediated signaling in physiological as well as pathological situations.Methods: We generated mice homozygous for loxP-flanked raptor and positive for the tamoxifen-inducible Cre recombinase (MerCreMer) under control of the α- myosin heavy chain promoter. The raptor gene encodes an essential component of mTORC1. Gene ablation was induced at the age of 10-12 weeks, and two weeks later the raptor cardiac-knockout (raptor-cKO) mice started voluntary cagewheel exercise or were subjected to transverse aortic constriction (TAC) to induce pressure overload.Results: In sedentary raptor-cKO mice, ejection fractions gradually decreased, resulting in significantly reduced values at 38 days (P < 0.001). Raptor-cKO mice started to die during the fifth week after the last tamoxifen injection. At that time, the mortality rate was 36% in sedentary (n = 11) and 64% in exercising (n = 14) mice. TAC-induced pressure overload resulted in severe cardiac dysfunction already at earlier timepoints. Thus, at 7-9 days after surgery, ejection fraction and fractional shortening values were 22.3% vs 43.5% and 10.2% vs 21.5% in raptor-cKO vs wild-type mice, respectively. This was accompanied by significant reductions of ventricular wall and septal thickness as well as an increase in left ventricular internal diameter. Moreover, ventricular weight to tibial length ratios were increased in wild-type, but not in the raptor-cKO TAC mice. Together, this shows that raptor-cKO mice rapidly developed dilated cardiomyopathy without going through a phase of adaptive hypertrophy. Expression of ANP and β-MHC was induced in all raptor-cKO mice irrespective of the cardiac load conditions. Consistent with reduced mTORC1 activity, phosphorylation of ribosomal S6 kinase and 4E-BP1 was blunted, indicating reduced protein synthesis. Moreover, expression of multiple genes involved in the regulation of energy metabolism was altered, and followed by a shift from fatty acid to glucose oxidation.Conclusion: Our study suggests that mTORC1 coordinates protein and energy metabolic pathways in the heart. Moreover, we demonstrate that raptor is essential for the cardiac adaptation to increased workload and importantly, also for normal physiological cardiac function.
Resumo:
Background: Cardiac magnetic resonance (CMR) is accepted as a method to assess suspected coronary artery disease (CAD). Nonetheless, invasive coronary angiography (CXA) combined or not with fractional flow reserve (FFR) remains the main diagnostic test to evaluate CAD. Little data exist on the economic impact of the use of these procedures in a population with a low to intermediate pre-test probability. Objective: To compare the costs of 3 decision strategies to revascularize a patient with suspected CAD: 1) strategy guided by CMR 2) hypothetical strategy guided by CXA-FFR, 3) hypothetical strategy guided by CXA alone.
Resumo:
BACKGROUND AND OBJECTIVES: The thalamus exerts a pivotal role in pain processing and cortical excitability control, and migraine is characterized by repeated pain attacks and abnormal cortical habituation to excitatory stimuli. This work aimed at studying the microstructure of the thalamus in migraine patients using an innovative multiparametric approach at high-field magnetic resonance imaging (MRI). DESIGN: We examined 37 migraineurs (22 without aura, MWoA, and 15 with aura, MWA) as well as 20 healthy controls (HC) in a 3-T MRI equipped with a 32-channel coil. We acquired whole-brain T1 relaxation maps and computed magnetization transfer ratio (MTR), generalized fractional anisotropy, and T2* maps to probe microstructural and connectivity integrity and to assess iron deposition. We also correlated the obtained parametric values with the average monthly frequency of migraine attacks and disease duration. RESULTS: T1 relaxation time was significantly shorter in the thalamus of MWA patients compared with MWoA (P < 0.001) and HC (P ≤ 0.01); in addition, MTR was higher and T2* relaxation time was shorter in MWA than in MWoA patients (P < 0.05, respectively). These data reveal broad microstructural alterations in the thalamus of MWA patients compared with MWoA and HC, suggesting increased iron deposition and myelin content/cellularity. However, MWA and MWoA patients did not show any differences in the thalamic nucleus involved in pain processing in migraine. CONCLUSIONS: There are broad microstructural alterations in the thalamus of MWA patients that may underlie abnormal cortical excitability control leading to cortical spreading depression and visual aura.
Resumo:
Biomarkers of blood lipid modification and oxidative stress have been associated with increased cardiovascular morbidity. We sought to determine whether these biomarkers were related to functional indices of stenosis severity among patients with stable coronary artery disease. We studied 197 consecutive patients with stable coronary artery disease due to single vessel disease. Fractional flow reserve (FFR) ≤ 0.80 was assessed as index of a functionally significant lesion. Serum levels of secretory phospholipase A2 (sPLA2) activity, secretory phospholipase A2 type IIA (sPLA2-IIA), myeloperoxydase (MPO), lipoprotein-associated phospholipase A2 (Lp-PLA2), and oxidized low-density lipoprotein (OxLDL) were assessed using commercially available assays. Patients with FFR > 0.8 had higher sPLA2 activity, sPLA2 IIA, and OxLDL levels than patients with FFR ≤ 0.8 (21.25 [16.03-27.28] vs 25.85 [20.58-34.63] U/mL, p < 0.001, 2.0 [1.5-3.4] vs 2.6 [2.0-3.4] ng/mL, p < 0.01; and 53.0 [36.0-71.0] vs 64.5 [50-89.25], p < 0.001 respectively). Patients with FFR > 0.80 had similar Lp-PLA2 and MPO levels versus those with FFR ≤ 0.8. sPLA2 activity, sPLA2 IIA significantly increased area under the curve over baseline characteristics to predict FFR ≤ 0.8 (0.67 to 0.77 (95 % confidence interval [CI]: 0.69-0.85) p < 0.01 and 0.67 to 0.77 (95 % CI: 0.69-0.84) p < 0.01, respectively). Serum sPLA2 activity as well as sPLA2-IIA level is related to functional characteristics of coronary stenoses in patients with stable coronary artery disease.
Resumo:
This paper presents field, petrographic-structural and geochemical data on spinet and plagioclase peridotites from the southern domain of the Lanzo ophiolitic peridotite massif (Western Alps). Spinet lherzolites, harzburgites and dunites crop out at Mt. Arpone and Mt. Musine. Field evidence indicates that pristine porphyroclastic spinet lherzolites are transformed to coarse granular spinet harzburgites, which are in turn overprinted by plagioclase peridotites, while strongly depleted spinet harzburgite and dunite bands and bodies replace the plagioclase peridotites. On the northern flank of Mt. Arpone, deformed, porphyroclastic (lithospheric) lherzolites, with diffuse pyroxenite banding, represent the oldest spinel-facies rocks. They show microstructures of a composite subsolidus evolution, suggesting provenance from deeper (asthenospheric) mantle levels and accretion to the lithosphere. These protoliths are locally transformed to coarse granular (reactive) spinet harzburgites and dunites, which show textures reminiscent of melt/rock reaction and geochemical characteristics suggesting that they are products of peridotite interaction with reactively percolating melts. Geochemical data and modelling suggest that <1-5% fractional melting of spinel-facies DMM produced the injected melts. Plagioclase peridotites are hybrid rocks resulting from pre-existing spinet peridotites and variable enrichment of plagioclase and micro-gabbroic material by percolating melts. The impregnating melts attained silica-saturation, as testified by widespread orthopyroxene replacement of olivine, during open system migration in the lithosphere. At Mt. Musine, coarse granular spinet harzburgite and dunite bodies replace the plagioclase peridotites. Most of these replacive, refractory peridotites have interstitial magmatic clinopyroxene with trace element compositions in equilibrium with MORB, while some Cpx have REE-depleted patterns suggesting transient geochemical features of the migrating MORB-type melts, acquired by interaction with the ambient plagioclase peridotite. These replacive spinet harzburgite and dunite bodies are interpreted as channels exploited for focused and reactive migration of silica-undersaturated melts with aggregate MORB compositions. Such melts were unrelated to the silica-saturated melts that refertilized the pre-existing plagioclase peridotites. Finally, MORB melt migration occurred along open fractures, now recorded as gabbroic dikes. Our data document the complexity of rock-types and mantle processes in the South Lanzo peridotite massif and describe a composite tectonic and magmatic scenario that is not consistent with the ``asthenospheric scenario'' proposed by previous authors. We envisage a ``transitional scenario'' in which extending subcontinental lithospheric mantle was strongly modified (both depleted and refertilized) by early melts with MORB-affinity formed by decompression partial melting of the upwelling asthenosphere, during pre-oceanic rifting and lithospheric thinning in the Ligurian Tethys realm. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Context: Glitazones increase fracture risk in long-term users and in postmenopausal women. Studies have demonstrated deleterious effects of glitazones on bone metabolism. Glitazones also have direct renal tubular effects increasing sodium reabsorption. We hypothesized that glitazones may also regulate renal calcium excretion. Design: In this double-blind, randomized, placebo-controlled, four-way, crossover study, we examined the effects of pioglitazone (45 mg/d for 6 wk) or placebo on renal calcium and phosphate excretion and PTH levels during different sodium intakes in 16 individuals (eight with type 2 diabetes and eight with essential hypertension). Results: Pioglitazone had no effect on corrected plasma calcium and phosphate levels but decreased significantly the alkaline phosphatase and PTH levels. Pioglitazone induced on average a 45% increase in urinary calcium excretion. The fractional excretion of calcium rose to the same extent, suggesting a glomerular filtration rate-independent effect. Sodium intake did not influence the calciuric effect of pioglitazone. Changes in diurnal and nocturnal calciuria were similar. There was no effect of pioglitazone on phosphate excretion. Conclusion: Pioglitazone decreases PTH levels and increases urinary calcium excretion, independently from changes in glomerular filtration rate and from the sodium load, suggesting an inhibitory effect of pioglitazone on the tubular reabsorption of calcium. These effects may contribute to the increased fracture risk with glitazone treatment.
Resumo:
The aim of this work is to study the influence of several analytical parameters on the variability of Raman spectra of paint samples. In the present study, microtome thin section and direct (no preparation) analysis are considered as sample preparation. In order to evaluate their influence on the measures, an experimental design such as 'fractional full factorial' with seven factors (including the sampling process) is applied, for a total of 32 experiments representing 160 measures. Once the influence of sample preparation highlighted, a depth profile of a paint sample is carried out by changing the focusing plane in order to measure the colored layer under a clearcoat. This is undertaken in order to avoid sample preparation such a microtome sectioning. Finally, chemometric treatments such as principal component analysis are applied to the resulting spectra. The findings of this study indicate the importance of sample preparation, or more specifically, the surface roughness, on the variability of the measurements on a same sample. Moreover, the depth profile experiment highlights the influence of the refractive index of the upper layer (clearcoat) when measuring through a transparent layer.
Resumo:
BACKGROUND AND PURPOSE: Hyperglycemia after stroke is associated with larger infarct volume and poorer functional outcome. In an animal stroke model, the association between serum glucose and infarct volume is described by a U-shaped curve with a nadir ≈7 mmol/L. However, a similar curve in human studies was never reported. The objective of the present study is to investigate the association between serum glucose levels and functional outcome in patients with acute ischemic stroke. METHODS: We analyzed 1446 consecutive patients with acute ischemic stroke. Serum glucose was measured on admission at the emergency department together with multiple other metabolic, clinical, and radiological parameters. National Institutes of Health Stroke Scale (NIHSS) score was recorded at 24 hours, and Rankin score was recorded at 3 and 12 months. The association between serum glucose and favorable outcome (Rankin score ≤2) was explored in univariate and multivariate analysis. The model was further analyzed in a robust regression model based on fractional polynomial (-2-2) functions. RESULTS: Serum glucose is independently correlated with functional outcome at 12 months (OR, 1.15; P=0.01). Other predictors of outcome include admission NIHSS score (OR, 1.18; P<0001), age (OR, 1.06; P<0.001), prestroke Rankin score (OR, 20.8; P=0.004), and leukoaraiosis (OR, 2.21; P=0.016). Using these factors in multiple logistic regression analysis, the area under the receiver-operator characteristic curve is 0.869. The association between serum glucose and Rankin score at 12 months is described by a J-shaped curve with a nadir of 5 mmol/L. Glucose values between 3.7 and 7.3 mmol/L are associated with favorable outcome. A similar curve was generated for the association of glucose and 24-hour NIHSS score, for which glucose values between 4.0 and 7.2 mmol/L are associated with a NIHSS score <7. Discussion-Both hypoglycemia and hyperglycemia are dangerous in acute ischemic stroke as shown by a J-shaped association between serum glucose and 24-hour and 12-month outcome. Initial serum glucose values between 3.7 and 7.3 mmol/L are associated with favorable outcome.
Resumo:
BACKGROUND: Urine catecholamines, vanillylmandelic, and homovanillic acid are recognized biomarkers for the diagnosis and follow-up of neuroblastoma. Plasma free (f) and total (t) normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MT) could represent a convenient alternative to those urine markers. The primary objective of this study was to establish pediatric centile charts for plasma metanephrines. Secondarily, we explored their diagnostic performance in 10 patients with neuroblastoma. PROCEDURE: We recruited 191 children (69 females) free of neuroendocrine disease to establish reference intervals for plasma metanephrines, reported as centile curves for a given age and sex based on a parametric method using fractional polynomials models. Urine markers and plasma metanephrines were measured in 10 children with neuroblastoma at diagnosis. Plasma total metanephrines were measured by HPLC with coulometric detection and plasma free metanephrines by tandem LC-MS. RESULTS: We observed a significant age-dependence for tNMN, fNMN, and fMN, and a gender and age-dependence for tMN, fNMN, and fMN. Free MT was below the lower limit of quantification in 94% of the children. All patients with neuroblastoma at diagnosis were above the 97.5th percentile for tMT, tNMN, fNMN, and fMT, whereas their fMN and tMN were mostly within the normal range. As expected, urine assays were inconstantly predictive of the disease. CONCLUSIONS: A continuous model incorporating all data for a given analyte represents an appealing alternative to arbitrary partitioning of reference intervals across age categories. Plasma metanephrines are promising biomarkers for neuroblastoma, and their performances need to be confirmed in a prospective study on a large cohort of patients. Pediatr Blood Cancer 2015;62:587-593. © 2015 Wiley Periodicals, Inc.
Resumo:
WE USED A MURINE MODEL OF TRANSIENT FOCAL CEREBRAL ISCHEMIA TO STUDY: 1) in vivo DTI long-term temporal evolution of the apparent diffusion coefficient (ADC) and diffusion fractional anisotropy (FA) at days 4, 10, 15 and 21 after stroke 2) ex vivo distribution of a plasticity-related protein (GAP-43) and its relationship with the ex vivo DTI characteristics of the striato-thalamic pathway (21 days). All animals recovered motor function. In vivo ADC within the infarct was significantly increased after stroke. In the stroke group, GAP-43 expression and FA values were significantly higher in the ipsilateral (IL) striatum and contralateral (CL) hippocampus compared to the shams. DTI tractography showed fiber trajectories connecting the CL striatum to the stroke region, where increased GAP43 and FA were observed and fiber tracts from the CL striatum terminating in the IL hippocampus.Our data demonstrate that DTI changes parallel histological remodeling and recovery of function.
Resumo:
OBJECTIVES: In this study, we investigated the structural plasticity of the contralesional motor network in ischemic stroke patients using diffusion magnetic resonance imaging (MRI) and explored a model that combines a MRI-based metric of contralesional network integrity and clinical data to predict functional outcome at 6 months after stroke. METHODS: MRI and clinical examinations were performed in 12 patients in the acute phase, at 1 and 6 months after stroke. Twelve age- and gender-matched controls underwent 2 MRIs 1 month apart. Structural remodeling after stroke was assessed using diffusion MRI with an automated measurement of generalized fractional anisotropy (GFA), which was calculated along connections between contralesional cortical motor areas. The predictive model of poststroke functional outcome was computed using a linear regression of acute GFA measures and the clinical assessment. RESULTS: GFA changes in the contralesional motor tracts were found in all patients and differed significantly from controls (0.001 ≤ p < 0.05). GFA changes in intrahemispheric and interhemispheric motor tracts correlated with age (p ≤ 0.01); those in intrahemispheric motor tracts correlated strongly with clinical scores and stroke sizes (p ≤ 0.001). GFA measured in the acute phase together with a routine motor score and age were a strong predictor of motor outcome at 6 months (r(2) = 0.96, p = 0.0002). CONCLUSION: These findings represent a proof of principle that contralesional diffusion MRI measures may provide reliable information for personalized rehabilitation planning after ischemic motor stroke. Neurology® 2012;79:39-46.
Resumo:
Two doses of synthetic atrial natriuretic peptide (0.5 and 5.0 micrograms/min) and its vehicle were infused intravenously for 4 hours in eight salt-loaded normal volunteers, and the effect on blood pressure, heart rate, renal hemodynamics, solute excretion, and secretion of vasoactive hormones was studied. The 0.5 micrograms/min infusion did not alter blood pressure or heart rate, whereas the 5.0 micrograms/min infusion significantly reduced the mean pressure by 20/9 mm Hg after 2.5 to 3 hours and increased the heart rate slightly. Inulin clearance was not significantly changed, but the mean p-aminohippurate clearance fell by 13 and 32% with the lower and higher doses, respectively. Urinary excretion of sodium and chloride increased slightly with the lower dose. With the higher dose, a marked increase in urinary excretion of sodium, chloride, and calcium was observed, reaching a peak during the second hour of the infusion. Potassium and phosphate excretion did not change significantly. A brisk increase in urine flow rate and fractional water excretion was seen only during the first hour of the high-dose infusion. Signs and symptoms of hypotension were observed in two subjects. No change in plasma renin activity, angiotensin II, or aldosterone was observed during either infusion, but a marked increase occurred after discontinuation of the high-dose infusion. In conclusion, the 5 micrograms/min infusion induced a transient diuretic effect, delayed maximal natriuretic activity, and a late fall in blood pressure, with no change in inulin clearance but a dose-related decrease in p-aminohippurate clearance. Despite large amounts of sodium excreted and blood pressure reduction, no counterregulatory changes were observed in the renin-angiotensin-aldosterone system or plasma vasopressin levels during the infusion.
Resumo:
The brain uses lactate produced by glycolysis as an energy source. How lactate originated from the blood stream is used to fuel brain metabolism is not clear. The current study measures brain metabolic fluxes and estimates the amount of pyruvate that becomes labeled in glial and neuronal compartments upon infusion of [3-(13) C]lactate. For that, labeling incorporation into carbons of glutamate and glutamine was measured by (13) C magnetic resonance spectroscopy at 14.1 T and analyzed with a two-compartment model of brain metabolism to estimate rates of mitochondrial oxidation, glial pyruvate carboxylation, and the glutamate-glutamine cycle as well as pyruvate fractional enrichments. Extracerebral lactate at supraphysiological levels contributes at least two-fold more to replenish the neuronal than the glial pyruvate pools. The rates of mitochondrial oxidation in neurons and glia, pyruvate carboxylase, and glutamate-glutamine cycles were similar to those estimated by administration of (13) C-enriched glucose, the main fuel of brain energy metabolism. These results are in agreement with primary utilization of exogenous lactate in neurons rather than astrocytes. © 2014 Wiley Periodicals, Inc.