107 resultados para Blue shark, Mediterranean phylogeography demography, mtDNA
Resumo:
Human cooperation is typically coordinated by institutions, which determine the outcome structure of the social interactions individuals engage in. Explaining the Neolithic transition from small- to large-scale societies involves understanding how these institutions co-evolve with demography. We study this using a demographically explicit model of institution formation in a patch-structured population. Each patch supports both social and asocial niches. Social individuals create an institution, at a cost to themselves, by negotiating how much of the costly public good provided by cooperators is invested into sanctioning defectors. The remainder of their public good is invested in technology that increases carrying capacity, such as irrigation systems. We show that social individuals can invade a population of asocials, and form institutions that support high levels of cooperation. We then demonstrate conditions where the co-evolution of cooperation, institutions, and demographic carrying capacity creates a transition from small- to large-scale social groups.
Resumo:
The nose-horned viper (Vipera ammodytes) occurs in a large part of the south-eastern Europe and Asia Minor. Phylogenetic relationships were reconstructed for a total of 59 specimens using sequences from three mitochondrial regions (16S and cytochrome b genes, and control region, totalling 2308 bp). A considerable number of clades were observed within this species, showing a large genetic diversity within the Balkan peninsula. Splitting of the basal clades was evaluated to about 4 million years ago. Genetic results are in contradiction with presently accepted taxonomy based on morphological characters: V. a. gregorwallneri and V. a. ruffoi do not display any genetic difference compared with the nominotypic subspecies (V. a. ammodytes), involving that these subspecies can be regarded as synonyms. High genetic divergence in the central part of the Balkan peninsula is not concordant with low morphological differentiation. Finally, the extensive genetic diversity within the Balkan peninsula and the colonisation routes are discussed
Resumo:
The Quaternary cold periods in Europe are thought to have heavily influenced the amount and distribution of intraspecific genetic variation in both animals and plants. The phylogeographies of 10 taxa, including mammals (Ursus arctos, Sorex spp., Crocidura suaveolens, Arvicola spp.), amphibians (Triturus spp.), arthropods (Chorthippus parallelus), and plants (Abies alba, Picea abies, Fagus sylvatica, Quercus spp.), were analysed to elucidate general trends across Europe. Only a small degree of congruence was found amongst the phylogeographies of the 10 taxa, but the likely postglacial colonization routes exhibit some similarities. A Brooks parsimony analysis produced an unrooted area phylogram, showing that: (i) the northern regions were colonized generally from the Iberic and Balkanic refugia; and (ii) the Italian lineages were often isolated due to the presence of the Alpine barrier. The comparison of colonization routes highlighted four main suture-zones where lineages from the different refugia meet. Some of the intraspecific genetic distances among lineages indicated a prequaternary divergence that cannot be connected to any particular cold period, but are probably related mainly to the date of arrival of each taxon in the European continent. As a consequence, molecular genetics so far appears to be of limited use in dating Quaternary events.
Resumo:
[Ressource électronique] : open access journal
Integrating species distribution models (SDMs) and phylogeography for two species of Alpine Primula.
Resumo:
The major intention of the present study was to investigate whether an approach combining the use of niche-based palaeodistribution modeling and phylo-geography would support or modify hypotheses about the Quaternary distributional history derived from phylogeographic methods alone. Our study system comprised two closely related species of Alpine Primula. We used species distribution models based on the extant distribution of the species and last glacial maximum (LGM) climate models to predict the distribution of the two species during the LGM. Phylogeographic data were generated using amplified fragment length polymorphisms (AFLPs). In Primula hirsuta, models of past distribution and phylogeographic data are partly congruent and support the hypothesis of widespread nunatak survival in the Central Alps. Species distribution models (SDMs) allowed us to differentiate between alpine regions that harbor potential nunatak areas and regions that have been colonized from other areas. SDMs revealed that diversity is a good indicator for nunataks, while rarity is a good indicator for peripheral relict populations that were not source for the recolonization of the inner Alps. In P. daonensis, palaeo-distribution models and phylogeographic data are incongruent. Besides the uncertainty inherent to this type of modeling approach (e.g., relatively coarse 1-km grain size), disagreement of models and data may partly be caused by shifts of ecological niche in both species. Nevertheless, we demonstrate that the combination of palaeo-distribution modeling with phylogeographical approaches provides a more differentiated picture of the distributional history of species and partly supports (P. hirsuta) and partly modifies (P. daonensis and P. hirsuta) hypotheses of Quaternary distributional history. Some of the refugial area indicated by palaeodistribution models could not have been identified with phylogeographic data.
Resumo:
Higher plants use several classes of blue light receptors to modulate a wide variety of physiological responses. Among them, both the phototropins and members of the Zeitlupe (ZTL) family use light oxygen voltage (LOV) photosensory domains. In Arabidopsis, these families comprise phot1, phot2 and ZTL, LOV Kelch Protein 2 (LKP2), and Flavin-binding Kelch F-box1 (FKF1). It has now been convincingly shown that blue-light-induced autophosphorylation of the phot1 kinase domain is an essential step in signal transduction. Recent experiments also shed light on the partially distinct photosensory specificities of phot1 and phot2. Phototropin signaling branches rapidly following photoreceptor activation to mediate distinct responses such as chloroplast movements or phototropism. Light activation of the LOV domain in ZTL family members modulates their capacity to interact with GIGANTEA (GI) and their ubiquitin E3 ligase activity. A complex between GI and FKF1 is required to trigger the degradation of a repressor of CO (CONSTANS) expression and thus modulates flowering time. In contrast, light-regulated complex formation between ZTL and GI appears to limit the capacity of ZTL to degrade its targets, which are part of the circadian oscillator.
Resumo:
Blue light mediates the phosphorylation of a membrane protein in seedlings from several plant species. When crude microsomal membrane proteins from dark-grown pea (Pisum sativum L.), sunflower (Helianthus annuus L.), zucchini (Cucurbita pepo L.), Arabidopsis (Arabidopsis thaliana L.), or tomato (Lycopersicon esculentum L.) stem segments, or from maize (Zea mays L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), wheat (Triticum aestivum L.), or sorghum (Sorghum bicolor L.) coleoptiles are illuminated and incubated in vitro with [gamma-(32)P]ATP, a protein of apparent molecular mass from 114 to 130 kD is rapidly phosphorylated. Hence, this system is probably ubiquitous in higher plants. Solubilized maize membranes exposed to blue light and added to unirradiated solubilized maize membranes show a higher level of phosphorylation of the light-affected protein than irradiated membrane proteins alone, suggesting that an unirradiated substrate is phosphorylated by a light-activated kinase. This finding is further demonstrated with membrane proteins from two different species, where the phosphorylated proteins are of different sizes and, hence, unambiguously distinguishable on gel electrophoresis. When solubilized membrane proteins from one species are irradiated and added to unirradiated membrane proteins from another species, the unirradiated protein becomes phosphorylated. These experiments indicate that the irradiated fraction can store the light signal for subsequent phosphorylation in the dark. They also support the hypothesis that light activates a specific kinase and that the systems share a close functional homology among different higher plants.
Resumo:
BACKGROUND: We report a patient with a highly unusual presentation of a mitochondrial disorder. HISTORY AND SIGNS: An 8-year old girl presented with muscular cramps as well as height and weight deceleration. Investigations revealed lactic acidosis, electrolytic imbalance and urinary loss of glucose and electrolytes secondary to proximal renal tubulopathy consistent with Fanconi syndrome (FS). Ophthalmic examination revealed asymptomatic retinitis pigmentosa (RP) with no other ocular manifestations. A mitochondriopathy was suspected and genetic analysis performed. THERAPY AND OUTCOME: Southern blotting documented a heteroplasmic mutation of mtDNA with deletion/duplication. Three discrete mitochondrial genomes were detected: normal; deletion of 6.7 kb and a deletion/duplication consisting of 1 normal and 1 deleted genome. The relative proportions varied considerably between tissues. CONCLUSIONS: The association of FS and RP combines features of Kearns-Sayre syndrome and Pearson marrow-pancreas syndrome, without being typical of either. This highly unusual clinical presentation emphasises the need for systemic investigation of patients with FS and further underlines the importance of mtDNA analysis in patients with unexpected associations of affected tissues.
Resumo:
OBJECTIVE: To report on the demographic data from the first 18 months of enrollment to an international registry on autoinflammatory diseases in the context of the Eurofever project. METHODS: A web-based registry collecting baseline and clinical information on autoinflammatory diseases and related conditions is available in the member area of the PRINTO web-site. Anonymised data were collected with standardised forms. RESULTS: 1880 (M:F=916:964) individuals from 67 centers in 31 countries have been entered in the Eurofever registry. Most of the patients (1388; 74%), reside in western Europe, 294 (16%) in the eastern and southern Mediterranean region (Turkey, Israel, North Africa), 106 (6%) in eastern Europe, 54 in Asia, 27 in South America and 11 in Australia. In total 1049 patients with a clinical diagnosis of a monogenic autoinflammatory diseases have been enrolled; genetic analysis was performed in 993 patients (95%): 703 patients have genetically confirmed disease and 197 patients are heterozygous carriers of mutations in genes that are mutated in patients with recessively inherited autoinflammatory diseases. The median diagnosis delay was 7.3 years (range 0.3-76), with a clear reduction in patients born after the identification of the first gene associated with autoinflammatory diseases in 1997. CONCLUSIONS: A shared online registry for patients with autoinflammatory diseases is available and enrollment is ongoing. Currently, there are data available for analysis on clinical presentation, disease course, and response to treatment, and to perform large scale comparative studies between different conditions.
Resumo:
Methylene blue (MB) and light are used for virus inactivation of plasma for transfusion. However, the presence of MB has been the subject of concern, and efforts have been made to efficiently remove the dye after photo-treatment. For this study, plasma was collected by apheresis from 10 donors (group A), then treated using the MacoPharma THERAFLEX procedure (MB; 1 microM, and light exposure; 180 J/cm(2)) (group B), and finally filtered in order to remove the dye (group C). Proteins were analyzed by two-dimensional electrophoresis, and peptides showing modifications were characterized by mass spectrometry. Clottable and antigenic fibrinogen levels, as well as fibrin polymerization time were measured. Analyses of the gels focused on a region corresponding to pI between 4.5 and 6.5, and M(r) from 7000 to 58 000. In this area, 387 +/- 47 spots matched, and four of these spots presented significant modifications. They corresponded to changes of the gamma-chain of fibrinogen, of transthyretin, and of apolipoprotein A-I, respectively. A decrease of clottable fibrinogen and a prolongation of fibrin polymerization time were observed in groups B and C. Removal of MB by filtration was not responsible for additional protein alterations. The effect of over-treatment of plasma by very high concentrations of MB (50 microM) in association with prolonged light exposure (3 h) was also analyzed, and showed complex alterations of most of the plasma proteins, including fibrinogen gamma-chain, transthyretin, and apolipoprotein A-I. Our data indicates that MB treatment at high concentration and prolonged illumination severely injure plasma proteins. By contrast, at the MB concentration used to inactivate viruses, damages are apparently very restricted.
Resumo:
Sex determination can be purely genetic (as in mammals and birds), purely environmental (as in many reptiles), or genetic but reversible by environmental factors during a sensitive period in life, as in many fish and amphibians (Wallace et al. 1999; Baroiller et al. 2009a; Stelkens & Wedekind 2010). Such environmental sex reversal (ESR) can be induced, for example, by temperature changes or by exposure to hormone-active substances. ESR has long been recognized as a means to produce more profitable single-sex cultures in fish farms (Cnaani & Levavi-Sivan 2009), but we know very little about its prevalence in the wild. Obviously, induced feminization or masculinization may immediately distort population sex ratios, and distorted sex ratios are indeed reported from some amphibian and fish populations (Olsen et al. 2006; Alho et al. 2008; Brykov et al. 2008). However, sex ratios can also be skewed by, for example, segregation distorters or sex-specific mortality. Demonstrating ESR in the wild therefore requires the identification of sex-linked genetic markers (in the absence of heteromorphic sex chromosomes) followed by comparison of genotypes and phenotypes, or experimental crosses with individuals who seem sex reversed, followed by sexing of offspring after rearing under non-ESR conditions and at low mortality. In this issue, Alho et al. (2010) investigate the role of ESR in the common frog (Rana temporaria) and a population that has a distorted adult sex ratio. They developed new sex-linked microsatellite markers and tested wild-caught male and female adults for potential mismatches between phenotype and genotype. They found a significant proportion of phenotypic males with a female genotype. This suggests environmental masculinization, here with a prevalence of 9%. The authors then tested whether XX males naturally reproduce with XX females. They collected egg clutches and found that some had indeed a primary sex ratio of 100% daughters. Other clutches seemed to result from multi-male fertilizations of which at least one male had the female genotype. These results suggest that sex-reversed individuals affect the sex ratio in the following generation. But how relevant is ESR if its prevalence is rather low, and what are the implications of successful reproduction of sex-reversed individuals in the wild?