227 resultados para AUTOLOGOUS HAEMATOPOIETIC STEM CELL TRANSPLANTATION
Resumo:
Co-culture techniques associating both dermal fibroblasts and epidermal keratinocytes have shown to have better clinical outcome than keratinocyte culture alone for the treatment of severe burns. Since fat grafting has been shown to improve scar remodelling, new techniques such as cell-therapy-assisted surgical reconstruction with isolated and expanded autologous adipose-derived stem cells (ASCs) would be of benefit to increase graft acceptation. Therefore, integrating ASCs into standardized procedures for cultured skin grafting could be of benefit for the patient if cell quality and quantity could be maintained. The purpose of this study was to evaluate ASC processing from adult tissue with simple isolation (without enzymatic steps), expansion (low density of 325-3,000 cells/cm2) and storage conditions to assure methods to enhance the cellular resistance when transferred back to the patient. Co-culture with cell-banked skin progenitor cells (FE002-SK2) showed an increase of 40-50% ASCs yield at high passages alongside with a better preservation of morphology, proper adipogenic and osteogenic differentiation and efficient biocompatibility with 3D collagen scaffolds. ASCs can be considered as a valuable additional cell source to be delivered in biological bandages to the patient in a need of tissue reconstruction such as burn patients.
Resumo:
ABSTRACT : The epidermis, the outermost compartment of the skin, is a stratified and squamous epithelium that constantly self-renews. Keratinocytes, which represent the main epidermal population, are responsible for its cohesion and barrier function. Epidermal renewal necessitates a fine equilibrium between keratinocyte proliferation and differentiation. The keratinocyte stem cell, located in the basal cell layer, is responsible for epidermal homeostasis and regeneration during the wound healing process. The transcription factor p63 structurally belongs to the p53 superfamily. It is expressed in the basal and supra-basal cell layers of stratified epithelia and is thought to be important for the renewal or the differentiation of keratinocyte stem cells (Yang et al., 1999; Mills et al., 1999). In order to better understand its function, we established an in vitro model of p63 deficient human keratinocyte stem cells using a shp63 mediated RNA interference. Knockdown of endogenous p63 induces downregulation of cell-adhesion genes as previously described (Carroll et al., 2006). Interestingly, the replating of attached p63-knockdown keratinocytes on a feeder layer results in a loss of attachment and proliferation. They are no longer clonogenic. However, if the same population are replated in a fibrin matrix, extended fibrinolysis is reported, a common process in wound healing, suggesting that p63 regulates the fibrinolytic pathway. This result was confirmed by Q-PCR and shows that the urokinase pathway, which mediates fibrinolysis, is upregulated. Altogether, these findings suggest a mechanism in which the fine tuning of p63 expression promotes attachment or release of the keratinocyte stem cell from the basement membrane by inducing genes of adhesion and/or of fibrinolysis. This mechanism may be important for epidermal self-renewal, differentiation as well as wound healing. Its misregulation may be partly responsible for the p63 knockout phenotype. The downregulation of p63 also induces a decrease in LEKTI expression. LEKTI (lymphoepithelial Kazal-type serine protease inhibitor) is a serine protease inhibitor encoded by the Spink5 gene. It is expressed and secreted in the uppermost differentiated layers of stratified epithelia and plays a role in the desquamation process. When this gene is disrupted, humans develop the Netherton syndrome (Chavanas et al., 2000b). It is a dermatosis characterized by hair dysplasias, ichtyosiform erythroderma and impairment in epidermal barrier function promoting inflammation similarly as in psoriasis with inflammatory infiltrate in excess. TNFα (tumor necrosis factor alpha) and EDA1 (ectodysplasin A1) are two transmembraneprecursors that belong to the TNF superfamily, which is involved in immune and inflammation regulation (Smahi et al., 2002). We suggest that the secreted serine protease inhibitor LEKTI plays a role in the regulation of TNFα and EDA1 precursor cleavage and absence of LEKTI induces excess of inflammation. To investigate this hypothesis, we induced downregulation of Spink5 expression in rat keratinocyte stem cells by using a shSpink5 mediated RNA interference approach. Interestingly, expression of TNFα and EDA1 is modified after knockdown of Spink5 by Q-PCR. Moreover, downregulation of Spink5 induces loss of cohesiveness between keratinocytes and colonies adopt a scattered phenotype. Altogether, these preliminary data suggest that downregulation of LEKTI may play a role in the inflammatory response in Netherton syndrome patients, by regulating TNFα expression.
Resumo:
Background: Natural Killer (NK) cells are thought to protect from residual leukemic cells in patients receiving stem cell transplantation. However, multiple retrospective analyses of patient data have yielded conflicting conclusions regarding a putative role of NK cells and the essential NK cell recognition events mediating a protective effect against leukemia. Further, a NK cell mediated protective effect against primary leukemia in vivo has not been shown directly.Methodology/Principal Findings: Here we addressed whether NK cells have the potential to control chronic myeloid leukemia (CML) arising based on the transplantation of BCR-ABL1 oncogene expressing primary bone marrow precursor cells into lethally irradiated recipient mice. These analyses identified missing-self recognition as the only NK cell-mediated recognition strategy, which is able to significantly protect from the development of CML disease in vivo.Conclusion: Our data provide a proof of principle that NK cells can control primary leukemic cells in vivo. Since the presence of NK cells reduced the abundance of leukemia propagating cancer stem cells, the data raise the possibility that NK cell recognition has the potential to cure CML, which may be difficult using small molecule BCR-ABL1 inhibitors. Finally, our findings validate approaches to treat leukemia using antibody-based blockade of self-specific inhibitory MHC class I receptors.
Resumo:
Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair, and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here, we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep), or its specific downregulation by short hairpin RNA (shRNA), strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs, we found the expression of c-myc, recently reported to be essential for GBM CSCs, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.
Resumo:
Canonical Wnt signaling plays a critical role in stem cell maintenance in epithelial homeostasis and carcinogenesis. Here, we show that in the mouse this role is critically mediated by Bcl9/Bcl9l, the mammalian homologues of Legless, which in Drosophila is required for Armadillo/beta-catenin signaling. Conditional ablation of Bcl9/Bcl9l in the intestinal epithelium, where the essential role of Wnt signaling in epithelial homeostasis and stem cell maintenance is well documented, resulted in decreased expression of intestinal stem cell markers and impaired regeneration of ulcerated colon epithelium. Adenocarcinomas with aberrant Wnt signaling arose with similar incidence in wild-type and mutant mice. However, transcriptional profiles were vastly different: Whereas wild-type tumors displayed characteristics of epithelial-mesenchymal transition (EMT) and stem cell-like properties, these properties were largely abrogated in mutant tumors. These findings reveal an essential role for Bcl9/Bcl9l in regulating a subset of Wnt target genes involved in controlling EMT and stem cell-related features and suggest that targeting the Bcl9/Bcl9l arm of Wnt signaling in Wnt-activated cancers might attenuate these traits, which are associated with tumor invasion, metastasis, and resistance to therapy.
Resumo:
Stem cell antigen-1 (Sca-1) has been used to identify cardiac stem cells in the mouse heart. To investigate the function of Sca-1 in aging and during the cardiac adaptation to stress, we used Sca-1-deficient mice. These mice developed dilated cardiomyopathy [end-diastolic left ventricular diameter at 18 wk of age: wild-type (WT) mice, 4.2 mm ± 0.3; Sca-1-knockout (Sca-1-KO) mice, 4.6 mm ± 0.1; ejection fraction: WT mice, 51.1 ± 2.7%; Sca-1-KO mice, 42.9 ± 2.7%]. Furthermore, the hearts of mice lacking Sca-1 demonstrated exacerbated susceptibility to pressure overload [ejection fraction after transaortic constriction (TAC): WT mice, 43.5 ± 3.2%; Sca-1-KO mice, 30.8% ± 4.0] and increased apoptosis, as shown by the 2.5-fold increase in TUNEL(+) cells in Sca-1-deficient hearts under stress. Sca-1 deficiency affected primarily the nonmyocyte cell fraction. Indeed, the number of Nkx2.5(+) nonmyocyte cells, which represent a population of cardiac precursor cells (CPCs), was 2-fold smaller in Sca-1 deficient neonatal hearts. In vitro, the ability of CPCs to differentiate into cardiomyocytes was not affected by Sca-1 deletion. In contrast, these cells demonstrated unrestricted differentiation into cardiomyocytes. Interestingly, proliferation of cardiac nonmyocyte cells in response to stress, as judged by BrdU incorporation, was higher in mice lacking Sca-1 (percentages of BrdU(+) cells in the heart after TAC: WT mice, 4.4 ± 2.1%; Sca-1-KO mice, 19.3 ± 4.2%). These data demonstrate the crucial role of Sca-1 in the maintenance of cardiac integrity and suggest that Sca-1 restrains spontaneous differentiation in the precursor population. The absence of Sca-1 results in uncontrolled precursor recruitment, exhaustion of the precursor pool, and cardiac dysfunction.
Functional late outgrowth endothelial progenitors isolated from peripheral blood of burned patients.
Resumo:
BACKGROUND: Bioengineered skin substitutes are increasingly considered as a useful option for the treatment of full thickness burn injury. Their viability following grafting can be enhanced by seeding the skin substitute with late outgrowth endothelial progenitor cells (EPCs). However, it is not known whether autologous EPCs can be obtained from burned patients shortly after injury. METHODS: Late outgrowth EPCs were isolated from peripheral blood sampled obtained from 10 burned patients (extent 19.6±10.3% TBSA) within the first 24h of hospital admission, and from 7 healthy subjects. Late outgrowth EPCs were phenotyped in vitro. RESULTS: In comparison with similar cells obtained from healthy subjects, growing colonies from burned patients yielded a higher percentage of EPC clones (46 versus 17%, p=0.013). Furthermore, EPCs from burned patients secreted more vascular endothelial growth factor (VEGF) into the culture medium than did their counterparts from healthy subjects (85.8±56.2 versus 17.6±14pg/mg protein, p=0.018). When injected to athymic nude mice 6h after unilateral ligation of the femoral artery, EPCs from both groups of subjects greatly accelerated the reperfusion of the ischaemic hindlimb and increased the number of vascular smooth muscle cells. CONCLUSIONS: The present study supports that, in patients with burns of moderate extension, it is feasible to obtain functional autologous late outgrowth EPCs from peripheral blood. These results constitute a strong incentive to pursue approaches based on using autotransplantation of these cells to improve the therapy of full thickness burns.
Resumo:
Stratified epithelia of mammals contain adult stem/progenitor cells that are instrumental for renewal, regeneration and repair. We have recently demonstrated, using clonal and functional analysis, that all stratified epithelia contain clonogenic stem cells that can respond to skin morphogenetic signals, while cells obtained from simple or pseudo-stratified epithelia cannot. A genome-wide expression analysis favors multilineage priming rather than reprogramming. Collectively, these observations are reminiscent of epithelial metaplasia, a phenomenon in which a cell adopts the phenotype of another epithelial cell, often in response to repeated environmental stress, e.g. smoking, alcohol and micro-traumatisms. Furthermore, they support the notion that metaplasia results from the expression of an unseen potency, revealed by an environmental deficiency. The thymus supposedly contains only progenitor epithelial cells but no stem cells. We have demonstrated that the thymus also contains a small population of clonogenic cells that can function as bona fide multipotent hair follicle stem cells in response to an inductive skin microenvironment and a genome-wide expression analysis indicates that it correlates with robust changes in the expression of genes important for thymus identity. Hence, multilineage priming or reprogramming can account for the fate change of epithelial stem/progenitor cells in response to a varying microenvironment.
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
Hematopoietic stem cells (HSC) are probably the best understood somatic stem cells and often serve as a paradigm for other stem cells. Nevertheless, most current techniques to genetically manipulate them in vivo are either constitutive and/or induced in settings of hematopoietic stress such as after irradiation. Here, we present a conditional expression system that allows for externally controllable transgenesis and knockdown in resident HSCs, based on a lentiviral vector containing a tet-O sequence and a transgenic mouse line expressing a doxycyclin-regulated tTR-KRAB repressor protein. HSCs harvested from tTR-KRAB mice are transduced with the lentiviral vector containing a cDNA (i.e., Green Fluorescent Protein (GFP)) and/or shRNA (i.e., p53) of interest and then transplanted into lethally irradiated recipients. While the vector is effectively repressed by tTR-KRAB during homing and engraftment, robust GFP/shp53 expression is induced on doxycyclin treatment in HSCs and their progeny. Doxycylin-controllable transcription is maintained on serial transplantation, indicating that repopulating HSCs are stably modified by this approach. In summary, this easy to implement conditional system provides inducible and reversible overexpression or knock down of genes in resident HSCs in vivo using a drug devoid of toxic or activating effects.
Resumo:
Introduction: Mantle cell lymphoma (MCL) accounts for 6% of all B-cell lymphomas and remains incurable for most patients. Those who relapse after first line therapy or hematopoietic stem cell transplantation have a dismal prognosis with short response duration after salvage therapy. On a molecular level, MCL is characterised by the translocation t[11;14] leading to Cyclin D1 overexpression. Cyclin D1 is downstream of the mammalian target of rapamycin (mTOR) kinase and can be effectively blocked by mTOR inhibitors such as temsirolimus. We set out to define the single agent activity of the orally available mTOR inhibitor everolimus (RAD001) in a prospective, multi-centre trial in patients with relapsed or refractory MCL (NCT00516412). The study was performed in collaboration with the EU-MCL network. Methods: Eligible patients with histologically/cytologically confirmed relapsed (not more than 3 prior lines of systemic treatment) or refractory MCL received everolimus 10 mg orally daily on day 1 - 28 of each cycle (4 weeks) for 6 cycles or until disease progression. The primary endpoint was the best objective response with adverse reactions, time to progression (TTP), time to treatment failure, response duration and molecular response as secondary endpoints. A response rate of 10% was considered uninteresting and, conversely, promising if 30%. The required sample size was 35 pts using the Simon's optimal two-stage design with 90% power and 5% significance. Results: A total of 36 patients with 35 evaluable patients from 19 centers were enrolled between August 2007 and January 2010. The median age was 69.4 years (range 40.1 to 84.9 years), with 22 males and 13 females. Thirty patients presented with relapsed and 5 with refractory MCL with a median of two prior therapies. Treatment was generally well tolerated with anemia (11%), thrombocytopenia (11%), neutropenia (8%), diarrhea (3%) and fatigue (3%) being the most frequent complications of CTC grade III or higher. Eighteen patients received 6 or more cycles of everolimus treatment. The objective response rate was 20% (95% CI: 8-37%) with 2 CR, 5 PR, 17 SD, and 11 PD. At a median follow-up of 6 months, TTP was 5.45 months (95% CI: 2.8-8.2 months) for the entire population and 10.6 months for the 18 patients receiving 6 or more cycles of treatment. Conclusion: This study demonstrates that single agent everolimus 10 mg once daily orally is well tolerated. The null hypothesis of inactivity could be rejected indicating a moderate anti-lymphoma activity in relapsed/refractory MCL. Further studies of either everolimus in combination with chemotherapy or as single agent for maintenance treatment are warranted in MCL.
Resumo:
To modulate alloreactivity after hematopoietic stem cell transplantation, "suicide" gene-modified donor T cells (GMCs) have been administered with an allogeneic T-cell-depleted marrow graft. We previously demonstrated that such GMCs, generated after CD3 activation, retrovirus-mediated transduction, and G418 selection, had an impaired Epstein-Barr virus (EBV) reactivity, likely to result in an altered control of EBV-induced lymphoproliferative disease. To further characterize the antiviral potential of GMCs, we compared the frequencies of cytomegalovirus (CMV)-specific CD8+ T (CMV-T) cells and EBV-specific CD8+ T (EBV-T) cells within GMCs from CMV- and EBV-double seropositive donors. Unlike anti-EBV responses, the anti-CMV responses were not altered by GMC preparation. During the first days of culture, CMV-T cells exhibited a lower level of CD3-induced apoptosis than did EBV-T cells. In addition, the CMV-T cells escaping initial apoptosis subsequently underwent a higher expansion rate than EBV-T cells. The differential early sensitivity to apoptosis could be in relation to the "recent activation" phenotype of EBV-T cells as evidenced by a higher level of CD69 expression. Furthermore, EBV-T cells were found to have a CD45RA-CD27+CCR7- effector memory phenotype, whereas CMV-T cells had a CD45RA+CD27-CCR7- terminal effector phenotype. Such differences could be contributive, because bulk CD8+CD27- cells had a higher expansion than did bulk CD8+CD27+ cells. Overall, ex vivo T-cell culture differentially affects apoptosis, long-term proliferation, and overall survival of CMV-T and EBV-T cells. Such functional differences need to be taken into account when designing cell and/or gene therapy protocols involving ex vivo T-cell manipulation.
Varicella Zoster Virus CNS disease in hematopoietic cell transplantation: A single center experience
Resumo:
Background: Varciella Zoster Virus (VZV) can lead to serious complications in Hematopoietic Cell Transplant (HCT) recipients. Central nervous system (CNS) VZV can be one of the most devastating infections in transplant recipients, yet little is known about this rare disease. Objectives: To describe CNS VZV in the post-transplant period and to define potential risk factors in the HCT population. Methods: We reviewed the course of all patients who received a first HCT at the Fred Hutchinson Cancer Center (FHCRC) in Seattle, WA from 1/1996 through 12/2007. Data were collected retrospectively using the Long-Term Follow-Up database, which includes on-site examinations, outside records, laboratory tests, and yearly questionnaires. Patients were classified as CNS VZV if they had laboratory confirmation of VZV in the cerebrospinal fluid (CSF), or had zoster with associated clinical and laboratory findings consistent with CNS disease. Results: A total of six patients developed VZV CNS disease during the evaluation period (table 1). Diagnosis was confirmed in 3/6 by detection of VZV in CSF by PCR. All other patients had a clinical diagnosis based on the presence of CNS symptoms, zoster, lymphocytic pleiocytosis, and response to IV acyclovir. Patients who developed CNS disease had a mean age of 42 years (range 34-51) at time of transplant. CNS disease developed at a mean of 9 months posttransplantation (range 0.5-24 months), and severity varied, ranging from meningitis (3/6) to encephalitis/myelitis (3/6). All had active graft-versus host disease (GHVD) and all were being treated with immunosuppressive therapy at time of diagnosis. Fever and headache were the most common symptoms, but patients who developed focal CNS findings or seizures (3/6) had a more complicated clinical course. While most patients presented with classic VZV/zoster skin lesions, 2/6 patients had no dermatologic findings associated with their presentation. Four (66%) of patients who developed VZV CNS disease died, two related to VZV complications despite aggressive antiviral therapy. Conclusions: In this cohort of HCT patients, VZV CNS disease was a rare complication. Mortality due to CNS VZV is high, particularly in patients who develop focal neurologic findings or seizures. Even in the absence of skin lesions, VZV CNS disease should be considered in patients who develop fevers and neurologic symptoms.
Resumo:
Calcineurin is the only known serine-threonine phosphatase under calcium-calmodulin control and key regulator of the immune system. Treatment of patients with calcineurin-inhibitory drugs like cyclosporin A and FK506 to prevent graft rejection dramatically increases the risk of cutaneous squamous cell carcinoma, which is a major cause of death after organ transplants. Recent evidence indicates that suppression of calcineurin signaling, together with its impact on the immune system, exerts direct tumor-promoting effects in keratinocytes, enhancing cancer stem cell potential. The underlying mechanism involves interruption of a double negative regulatory axis, whereby calcineurin and nuclear factors of activated T-cell signaling inhibits expression of ATF3, a negative regulator of p53. The resulting suppression of keratinocyte cancer cell senescence is of likely clinical significance for the many patients under treatment with calcineurin inhibitors and may be of relevance for other cancer types in which altered calcium-calcineurin signaling plays a role.