343 resultados para nuclear membrane
Resumo:
Madin-Darby canine kidney cells (MDCK) were transfected with a cDNA encoding the glycosyl-phosphatidylinositol (GPI)-anchored protein mouse Thy-1 in order to study the steady-state surface distribution of exogenous and endogenous GPI-linked proteins. Immunofluorescence of transfected cells grown on collagen-coated coverslips showed that expression of Thy-1 was variable throughout the epithelium, with some cells expressing large amounts of Thy-1 adjacent to very faintly staining cells. Selective surface iodination of cells grown on collagen-coated or uncoated transwell filters followed by immunoprecipitation of Thy-1 demonstrated that all the Thy-1 was present exclusively in the apical plasma membrane. Although cells grown on uncoated filters had much smaller amounts of Thy-1, it was consistently localized on the apical surfaces. Immunofluorescent localization of Thy-1 on 1 micron frozen sections of filter-grown cells demonstrated that all the Thy-1 was on the apical surface and there was no detectable intracellular pool. Phosphatidylinositol-specific phospholipase C digestion of intact iodinated monolayers released Thy-1 only into the apical medium, indicating that Thy-1 was processed normally in transfected cells and was anchored by a GPI-tail. In agreement with previous findings, endogenous GPI-linked proteins were found only on the apical plasma membrane. These results suggest that there is a common mechanism for sorting and targeting of GPI-linked proteins in polarized epithelial cells.
Resumo:
Liver metabolism is markedly sex-dimorphic; accordingly, the prevalence of liver diseases is different between sexes. The superfamily of nuclear receptors (NRs) governs the proper expression of key liver metabolism genes by sensing lipid-soluble hormones and dietary lipids. When the expression of those genes is deregulated, disease development is favored. However, we lack a comprehensive picture of the differences between NR actions in males and females. Here, we reviewed explorative studies that assessed NR functions in both sexes, and we propose a first map of sex-dimorphic NR expression in the liver. Our analysis suggested that NRs in the female liver exhibited cross-talk with more liver-protective potential than NRs in male liver. This study provides empirical support to the hypothesis that women are more resilient to some liver diseases than men, based on a more compensative NR network. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Resumo:
The effects of thyroid hormones on the nervous system are mediated by the presence of nuclear T3 receptors (NT3R). In this study, the expression of NT3R was investigated in spinal cord, dorsal root ganglia (DRG), or sciatic nerve of adult rats after immunostaining with a 2B3-NT3R monoclonal antibody which recognizes both alpha and beta types of NT3R. The specificity of this monoclonal antibody was confirmed by Western blots. The 2B3-NT3R monoclonal antibody recognized one band corresponding to a molecular weight of 57 kDa in extract of spinal cord or DRG. No staining was observed on immunoblot of intact sciatic nerve. In the spinal cord, the nuclei of the neurons and glial cells including both astrocytes and oligodendrocytes exhibited 2B3-NT3R immunoreactivity. While all the nuclei of the DRG sensory neurons expressed the NT3R, all the nuclei of the satellite and Schwann cells were devoid of any immunoreaction. In the sciatic nerve, the nuclei of the Schwann cells also lacked 2B3-NT3R-immunoreactivity. After sciatic nerve transection in vivo, Schwann cell nuclei, which never expressed NT3R in intact nerves of adult rats, displayed a clear 2B3-NT3R immunoreaction in proximal and distal stumps adjacent to the section. Double immunostaining with antibodies raised to 3-sulfogalactosylceramide or S100 confirmed that most of the NT3R containing nuclei belong to Schwann cells. In dissociated cell cultures grown in vitro from sciatic nerves, Schwann cells exhibited 2B3-NT3R immunoreactivity. These data suggest that the inhibition of NT3R expression in Schwann cells ensheathing axons in intact nerve is reversed when the axons are degenerating or lacking.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
It is becoming increasingly clear that the cell nucleus is a highly structurized organelle. Because of its tight compartmentalization, it is generally believed that a framework must exist, responsible for maintaining such a spatial organization. Over the last twenty years many investigations have been devoted to identifying the nuclear framework. Structures isolated by different techniques have been obtained in vitro and are variously referred to as nuclear matrix, nucleoskeleton or nuclear scaffold. Many different functions, such as DNA replication and repair, mRNA transcription, processing and transport have been described to occur in close association with these structures. However, there is still much debate as to whether or not any of these preparations corresponds to a nuclear framework that exists in vivo. In this article we summarize the most commonly-used methods for obtaining preparations of nuclear frameworks and we also stress the possible artifacts that can be created in vitro during the isolation procedures. Emphasis is placed also on the protein composition of the frameworks as well as on some possible signalling functions that have been recently described to occur in tight association with the nuclear matrix.
Resumo:
A high throughput method was designed to produce hyperpolarized gases by combining low-temperature dynamic nuclear polarization with a sublimation procedure. It is illustrated by applications to 129Xe nuclear magnetic resonance in xenon gas, leading to a signal enhancement of 3 to 4 orders of magnitude compared to the room-temperature thermal equilibrium signal at 7.05 T.
Resumo:
PPARbeta is expressed in the mouse epidermis during fetal development, and progressively disappears from the interfollicular epidermis after birth. Interestingly, its expression is strongly reactivated in the adult epidermis in conditions where keratinocyte proliferation is induced and during wound healing. Data obtained on PPARbeta heterozygous mice reveal that PPARbeta is implicated in the control of keratinocyte proliferation and is necessary for rapid healing of a skin wound.
Resumo:
The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway.
Resumo:
The ultrastructure of the membrane attack complex (MAC) of complement had been described as representing a hollow cylinder of defined dimensions that is composed of the proteins C5b, C6, C7, C8, and C9. After the characteristic cylindrical structure was identified as polymerized C9 [poly(C9)], the question arose as to the ultrastructural identity and topology of the C9-polymerizing complex C5b-8. An electron microscopic analysis of isolated MAC revealed an asymmetry of individual complexes with respect to their length. Whereas the length of one boundary (+/- SEM) was always 16 +/- 1 nm, the length of the other varied between 16 and 32 nm. In contrast, poly(C9), formed spontaneously from isolated C9, had a uniform tubule length (+/- SEM) of 16 +/- 1 nm. On examination of MAC-phospholipid vesicle complexes, an elongated structure was detected that was closely associated with the poly(C9) tubule and that extended 16-18 nm beyond the torus of the tubule and 28-30 nm above the membrane surface. The width of this structure varied depending on its two-dimensional projection in the electron microscope. By using biotinyl C5b-6 in the formation of the MAC and avidin-coated colloidal gold particles for the ultrastructural analysis, this heretofore unrecognized subunit of the MAC could be identified as the tetramolecular C5b-8 complex. Identification also was achieved by using anti-C5 Fab-coated colloidal gold particles. A similar elongated structure of 25 nm length (above the surface of the membrane) was observed on single C5b-8-vesicle complexes. It is concluded that the C5b-8 complex, which catalyzes poly(C9) formation, constitutes a structure of discrete morphology that remains as such identifiable in the fully assembled MAC, in which it is closely associated with the poly(C9) tubule.
Resumo:
Polyphosphate (polyP) occurs ubiquitously in cells, but its functions are poorly understood and its synthesis has only been characterized in bacteria. Using x-ray crystallography, we identified a eukaryotic polyphosphate polymerase within the membrane-integral vacuolar transporter chaperone (VTC) complex. A 2.6 angstrom crystal structure of the catalytic domain grown in the presence of adenosine triphosphate (ATP) reveals polyP winding through a tunnel-shaped pocket. Nucleotide- and phosphate-bound structures suggest that the enzyme functions by metal-assisted cleavage of the ATP gamma-phosphate, which is then in-line transferred to an acceptor phosphate to form polyP chains. Mutational analysis of the transmembrane domain indicates that VTC may integrate cytoplasmic polymer synthesis with polyP membrane translocation. Identification of the polyP-synthesizing enzyme opens the way to determine the functions of polyP in lower eukaryotes.
Resumo:
In extreme situations, such as hyperacute rejection of heart transplant or major heart trauma, heart preservation may not be possible. Our experimental team works on a project of peripheral extracorporeal membrane oxygenation (ECMO) support in acardia as a bridge to heart transplantation or artificial heart implantation. An ECMO support was established in five calves (58.6 ± 6.9 kg) by the transjugular insertion to the caval axis of a self-expanded cannula, with carotid artery return. After baseline measurements, ventricular fibrillation was induced, great arteries were clamped, heart was excised, and right and left atria remnants, containing pulmonary veins, were sutured together leaving an atrial septal defect over the caval axis cannula. Measurements of pump flow and arterial pressure were taken with the pulmonary artery clamped and anastomosed with the caval axis for a total of 6 hours. Pulmonary artery anastomosis to the caval axis provided an acceptable 6 hour hemodynamic stability, permitting a peripheral access ECMO support in extreme scenarios indicating a heart explantation.
Resumo:
O-Hexanoyl-3,5-diiodo-N-(4-azido-2-nitro-phenyl)tyramine has been used after photochemical conversion into the reactive nitrene to label (Na+,K+)-ATPase from Bufo marinus toad kidney. Immunochemical evidence indicates that the reagent labels both subunits of the enzyme in partially purified form as well as in microsomal membranes. These results support the view that the glycoprotein subunit, like the catalytic subunit, possesses hydrophobic domains by which it is integrated into the plasma membrane.
Resumo:
OBJECTIVE: To investigate the involvement of the nuclear factor (NF)-kappaB in the interleukin (IL)-1 beta-mediated macrophage migration inhibitory factor (MIF) gene activation. DESIGN: Prospective study. SETTING: Human reproduction research laboratory. PATIENT(S): Nine women with endometriotic lesions. INTERVENTION(S): Endometriotic lesions were obtained during laparoscopic surgery. MAIN OUTCOME MEASURE(S): The MIF protein secretion was analyzed by ELISA, MIF mRNA expression by quantitative real-time polymerase chain reaction (PCR), NF-kappaB translocation into the nucleus by electrophoresis mobility shift assay, I kappaB phosphorylation and degradation by Western blot, and human MIF promoter activity by transient cell transfection. RESULT(S): This study showed a significant dose-dependent increase of MIF protein secretion and mRNA expression, the NF-kappaB translocation into the nucleus, I kappaB phosphorylation, I kappaB degradation, and human MIF promoter activity in endometriotic stromal cells in response to IL-1 beta. Curcumin (NF-kappaB inhibitor) significantly inhibited all these IL-1 beta-mediated effects. Analysis of the activity of deletion constructs of the human MIF promoter and a computer search localized two putative regulatory elements corresponding to NF-kappaB binding sites at positions -2538/-2528 bp and -1389/-1380 bp. CONCLUSION(S): This study suggests the involvement of the nuclear transcription factor NF-kappaB in MIF gene activation in ectopic endometrial cells in response to IL-1 beta and identifies a possible pathway of endometriosis-associated inflammation and ectopic cell growth.