79 resultados para fractional random fields
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
We investigated the association between exposure to radio-frequency electromagnetic fields (RF-EMFs) from broadcast transmitters and childhood cancer. First, we conducted a time-to-event analysis including children under age 16 years living in Switzerland on December 5, 2000. Follow-up lasted until December 31, 2008. Second, all children living in Switzerland for some time between 1985 and 2008 were included in an incidence density cohort. RF-EMF exposure from broadcast transmitters was modeled. Based on 997 cancer cases, adjusted hazard ratios in the time-to-event analysis for the highest exposure category (>0.2 V/m) as compared with the reference category (<0.05 V/m) were 1.03 (95% confidence interval (CI): 0.74, 1.43) for all cancers, 0.55 (95% CI: 0.26, 1.19) for childhood leukemia, and 1.68 (95% CI: 0.98, 2.91) for childhood central nervous system (CNS) tumors. Results of the incidence density analysis, based on 4,246 cancer cases, were similar for all types of cancer and leukemia but did not indicate a CNS tumor risk (incidence rate ratio = 1.03, 95% CI: 0.73, 1.46). This large census-based cohort study did not suggest an association between predicted RF-EMF exposure from broadcasting and childhood leukemia. Results for CNS tumors were less consistent, but the most comprehensive analysis did not suggest an association.
Resumo:
This paper presents a new and original variational framework for atlas-based segmentation. The proposed framework integrates both the active contour framework, and the dense deformation fields of optical flow framework. This framework is quite general and encompasses many of the state-of-the-art atlas-based segmentation methods. It also allows to perform the registration of atlas and target images based on only selected structures of interest. The versatility and potentiality of the proposed framework are demonstrated by presenting three diverse applications: In the first application, we show how the proposed framework can be used to simulate the growth of inconsistent structures like a tumor in an atlas. In the second application, we estimate the position of nonvisible brain structures based on the surrounding structures and validate the results by comparing with other methods. In the final application, we present the segmentation of lymph nodes in the Head and Neck CT images, and demonstrate how multiple registration forces can be used in this framework in an hierarchical manner.
Resumo:
PURPOSE: To improve the traditional Nyquist ghost correction approach in echo planar imaging (EPI) at high fields, via schemes based on the reversal of the EPI readout gradient polarity for every other volume throughout a functional magnetic resonance imaging (fMRI) acquisition train. MATERIALS AND METHODS: An EPI sequence in which the readout gradient was inverted every other volume was implemented on two ultrahigh-field systems. Phantom images and fMRI data were acquired to evaluate ghost intensities and the presence of false-positive blood oxygenation level-dependent (BOLD) signal with and without ghost correction. Three different algorithms for ghost correction of alternating readout EPI were compared. RESULTS: Irrespective of the chosen processing approach, ghosting was significantly reduced (up to 70% lower intensity) in both rat brain images acquired on a 9.4T animal scanner and human brain images acquired at 7T, resulting in a reduction of sources of false-positive activation in fMRI data. CONCLUSION: It is concluded that at high B(0) fields, substantial gains in Nyquist ghost correction of echo planar time series are possible by alternating the readout gradient every other volume.
Resumo:
This paper suggests a method for obtaining efficiency bounds in models containing either only infinite-dimensional parameters or both finite- and infinite-dimensional parameters (semiparametric models). The method is based on a theory of random linear functionals applied to the gradient of the log-likelihood functional and is illustrated by computing the lower bound for Cox's regression model
Resumo:
This review covers some of the contributions to date from cerebellar imaging studies performed at ultra-high magnetic fields. A short overview of the general advantages and drawbacks of the use of such high field systems for imaging is given. One of the biggest advantages of imaging at high magnetic fields is the improved spatial resolution, achievable thanks to the increased available signal-to-noise ratio. This high spatial resolution better matches the dimensions of the cerebellar substructures, allowing a better definition of such structures in the images. The implications of the use of high field systems is discussed for several imaging sequences and image contrast mechanisms. This review covers studies which were performed in vivo in both rodents and humans, with a special focus on studies that were directed towards the observation of the different cerebellar layers.
Resumo:
In this paper, we prove that a self-avoiding walk of infinite length provides a structure that would resolve Olbers' paradox. That is, if the stars of a universe were distributed like the vertices of an infinite random walk with each segment length of about a parsec, then the night sky could be as dark as actually observed on the Earth. Self-avoiding random walk structure can therefore resolve the Olbers' paradox even in a static universe.
Resumo:
Summary Biodiversity is usually studied through species or genetic diversities. To date, these two levels of diversity have remained the independent .fields of investigations of community ecologists and population geneticists. However, recent joint analyses of species and genetic diversities have suggested that common processes may underlie the two levels. Positive correlations between species diversity and genetic diversity may arise when the effects of drift and migration overwhelm selective effects. The first goal of this thesis was to make a joint investigation of the patterns of species and genetic diversity in a community of freshwater gastropods living in a floodplain habitat. The second goal was to determine, as far as possible, the relative influences of the processes underlying the patterns observed at each level. In chapter 2 we investigate the relative influences of different evolutionary forces in shaping the genetic structure of Radix balthica populations. Results revealed that the structure inferred using quantitative traits was lower or equal to the one inferred using neutral molecular markers. Consequently, the pattern of structure observed could be only due to random drift, possibly to uniform selection, but definitely not to selection for local optima. In chapter 3, we analyze the temporal variation of species and genetic diversities in five localities. An extended period of drought occurred at the end of the study period leading to decay of both species and genetic diversities. This parallel loss of diversity following a natural perturbation highlighted the role sometimes predominant of random drift over selection on patterns of biodiversity in a floodplain habitat. In chapter 4, we compare the spatial genetic structures of two sympatric species: Radix balthica and Planorbis carinatus. We found that R. balthica populations are weakly structured and have moderate to high values of gene diversity. In contrast, P. carinatus populations are highly structured and poorly diverse. Then we measured correlations between various indices of species and genetic diversity using genetic data .from the two species. We found only one significant correlation: between species richness and gene diversity of P. carinatus. This result highlights the .need to use genetic date from more than one species to infer correlations between species and genetic diversities. Overall, this thesis provided new insights into the common processes underlying patterns of species and genetic diversity. Résumé La biodiversité est généralement étudiée au niveau de la diversité génétique ou spécifique. Ces deux niveaux sont restés jusqu'à maintenant les domaines d'investigation séparés des généticiens des populations et des écologistes des communautés. Cependant, des analyses conjointes des diversités génétique et spécifique ont récemment suggéré que des processus similaires pouvaient influencer ces deux niveaux. Des corrélations positives entre les diversités génétique et spécifique pourraient être dues aux effets de migration et de dérive qui dominent les effets sélectifs. Le premier but de cette thèse était de faire une étude conjointe des diversités génétique et spécifique dans une communauté de gastéropodes d'eau douce. Le second objectif était de déterminer les influences relatives des différents processus liés à chaque niveau de diversité. Dans le chapitre 2 nous cherchons à déterminer quelles forces évolutives influencent la structure génétique de quatre populations de Radix balthica. La structure mesurée sur des traits quantitatifs s'est révélée être plus faible ou égale à celle mesurée avec des marqueurs moléculaires neutres. La structure observée pourrait ainsi être due uniquement à la dérive génétique, potentiellement à la sélection uniforme, mais en aucun cas à la sélection locale pour différents optima. Dans le chapitre 3 nous analysons la variation temporelle des diversités génétique et spécifique dans cinq localités. Une récente période de sécheresse a causé une diminution parallèle des deux niveaux de diversité. Cette perturbation à mis en évidence le rôle parfois prépondérant de la dérive par rapport à celui de la sélection dans le déterminisme de la biodiversité dans un écosytème alluvial. Dans le chapitre 4, nous comparons la structure génétique spatiale de deux espèces vivant en sympatrie : Radix balthica et Planorbis carinatus. Les populations de R. balthica sont peu structurées et présentent un niveau de diversité relativement élevé alors que celles de P. carinatus sont fortement structurées et peu diversifiées. Nous avons ensuite mesuré différentes corrélations entre les diversités génétique et spécifique, mais la seule relation significative a été trouvée entre la richesse spécifique et la diversité génétique de P. carinatus. Ainsi, cette thèse a permis de découvrir de nouveaux aspects des processus qui influencent en parallèle la diversité aux niveaux génétique et spécifique.
Resumo:
Using numerical simulations we investigate how overall dimensions of random knots scale with their length. We demonstrate that when closed non-self-avoiding random trajectories are divided into groups consisting of individual knot types, then each such group shows the scaling exponent of approximately 0.588 that is typical for self-avoiding walks. However, when all generated knots are grouped together, their scaling exponent becomes equal to 0.5 (as in non-self-avoiding random walks). We explain here this apparent paradox. We introduce the notion of the equilibrium length of individual types of knots and show its correlation with the length of ideal geometric representations of knots. We also demonstrate that overall dimensions of random knots with a given chain length follow the same order as dimensions of ideal geometric representations of knots.
Resumo:
We study discrete-time models in which death benefits can depend on a stock price index, the logarithm of which is modeled as a random walk. Examples of such benefit payments include put and call options, barrier options, and lookback options. Because the distribution of the curtate-future-lifetime can be approximated by a linear combination of geometric distributions, it suffices to consider curtate-future-lifetimes with a geometric distribution. In binomial and trinomial tree models, closed-form expressions for the expectations of the discounted benefit payment are obtained for a series of options. They are based on results concerning geometric stopping of a random walk, in particular also on a version of the Wiener-Hopf factorization.
Resumo:
Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals' explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants' explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people's interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.
Resumo:
IMPORTANCE: Glioblastoma is the most devastating primary malignancy of the central nervous system in adults. Most patients die within 1 to 2 years of diagnosis. Tumor-treating fields (TTFields) are a locoregionally delivered antimitotic treatment that interferes with cell division and organelle assembly. OBJECTIVE: To evaluate the efficacy and safety of TTFields used in combination with temozolomide maintenance treatment after chemoradiation therapy for patients with glioblastoma. DESIGN, SETTING, AND PARTICIPANTS: After completion of chemoradiotherapy, patients with glioblastoma were randomized (2:1) to receive maintenance treatment with either TTFields plus temozolomide (n = 466) or temozolomide alone (n = 229) (median time from diagnosis to randomization, 3.8 months in both groups). The study enrolled 695 of the planned 700 patients between July 2009 and November 2014 at 83 centers in the United States, Canada, Europe, Israel, and South Korea. The trial was terminated based on the results of this planned interim analysis. INTERVENTIONS: Treatment with TTFields was delivered continuously (>18 hours/day) via 4 transducer arrays placed on the shaved scalp and connected to a portable medical device. Temozolomide (150-200 mg/m2/d) was given for 5 days of each 28-day cycle. MAIN OUTCOMES AND MEASURES: The primary end point was progression-free survival in the intent-to-treat population (significance threshold of .01) with overall survival in the per-protocol population (n = 280) as a powered secondary end point (significance threshold of .006). This prespecified interim analysis was to be conducted on the first 315 patients after at least 18 months of follow-up. RESULTS: The interim analysis included 210 patients randomized to TTFields plus temozolomide and 105 randomized to temozolomide alone, and was conducted at a median follow-up of 38 months (range, 18-60 months). Median progression-free survival in the intent-to-treat population was 7.1 months (95% CI, 5.9-8.2 months) in the TTFields plus temozolomide group and 4.0 months (95% CI, 3.3-5.2 months) in the temozolomide alone group (hazard ratio [HR], 0.62 [98.7% CI, 0.43-0.89]; P = .001). Median overall survival in the per-protocol population was 20.5 months (95% CI, 16.7-25.0 months) in the TTFields plus temozolomide group (n = 196) and 15.6 months (95% CI, 13.3-19.1 months) in the temozolomide alone group (n = 84) (HR, 0.64 [99.4% CI, 0.42-0.98]; P = .004). CONCLUSIONS AND RELEVANCE: In this interim analysis of 315 patients with glioblastoma who had completed standard chemoradiation therapy, adding TTFields to maintenance temozolomide chemotherapy significantly prolonged progression-free and overall survival. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00916409.