182 resultados para fluorescein diacetate hydrolysis
Resumo:
Ligand-gated ion channels of the Cys loop family are receptors for small amine-containing neurotransmitters. Charged amino acids are strongly conserved in the ligand-binding domain of these receptor proteins. To investigate the role of particular residues in ligand binding of the serotonin 5-HT3AS receptor (5-HT3R), glutamate amino acid residues at three different positions, Glu97, Glu224, and Glu235, in the extracellular N-terminal domain were substituted with aspartate and glutamine using site-directed mutagenesis. Wild type and mutant receptor proteins were expressed in HEK293 cells and analyzed by electrophysiology, radioligand binding, fluorescence measurements, and immunochemistry. A structural model of the ligand-binding domain of the 5-HT3R based on the acetylcholine binding protein revealed the position of the mutated amino acids. Our results demonstrate that mutations of Glu97, distant from the ligand-binding site, had little effect on the receptor, whereas mutations Glu224 and Glu235, close to the predicted binding site, are indeed important for ligand binding. Mutations E224Q, E224D, and E235Q decreased EC50 and Kd values 5-20-fold, whereas E235D was functionally expressed at a low level and had a more than 100-fold increased EC50 value. Comparison of the fluorescence properties of a fluorescein-labeled antagonist upon binding to wild type 5-HT3R and E235Q, allowed us to localize Glu235 within a distance of 1 nm around the ligand-binding site, as proposed by our model.
Resumo:
The therapeutic efficacy of BAL9141 (formerly Ro 63-9141), a novel cephalosporin with broad in vitro activity that also has activity against methicillin-resistant Staphylococcus aureus (MRSA), was investigated in rats with experimental endocarditis. The test organisms were homogeneously methicillin-resistant S. aureus strain COL transformed with the penicillinase-encoding plasmid pI524 (COL Bla+) and homogeneously methicillin-resistant, penicillinase-producing isolate P8-Hom, selected by serial exposure of parent strain P8 to methicillin. The MICs of BAL9141 for these organisms (2 mg/liter) were low, and BAL9141was bactericidal in time-kill curve studies after 24 h of exposure to either two, four, or eight times the MIC. Rats with experimental endocarditis were treated in a three-arm study with a continuous infusion of BAL5788 (formerly Ro 65-5788), a carbamate prodrug of BAL9141, or with amoxicillin-clavulanate or vancomycin. The rats were administered BAL9141 to obtain steady-state target levels of 20, 10, and 5 mg of per liter or were administered either 1.2 g of amoxicillin-clavulanate (ratio 5:1) every 6 h or 1 g of vancomycin every 12 h at changing flow rates to simulate the pharmacokinetics produced in humans by intermittent intravenous treatment. Treatment was started 12 h after bacterial challenge and lasted for 3 days. BAL9141 was successful in the treatment of experimental endocarditis due to either MRSA isolate COL Bla+ or MRSA isolate P8-Hom at the three targeted steady-state concentrations and sterilized >90% of cardiac vegetations (P < 0.005 versus controls; P < 0.05 versus amoxicillin-clavulanate and vancomycin treatment groups). These promising in vivo results with BAL9141 correlated with the high affinity of the drug for PBP 2a and its stability to penicillinase hydrolysis observed in vitro.
Resumo:
Macrophages play key roles in inflammatory disorders. Therefore, they are targets of treatments aiming at their local destruction in inflammation sites. However, injection of low molecular mass therapeutics, including photosensitizers, in inflamed joints results in their rapid efflux out of the joints, and poor therapeutic index. To improve selective uptake and increase retention of therapeutics in inflamed tissues, hydrophilic nanogels based on chitosan, of which surface was decorated with hyaluronate and which were loaded with one of three different anionic photosensitizers were developed. Optimal uptake of these functionalized nanogels by murine RAW 264.7 or human THP-1 macrophages as models was achieved after <4h incubation, whereas only negligible uptake by murine fibroblasts used as control cells was observed. The uptake by cells and the intracellular localization of the photosensitizers, of the fluorescein-tagged chitosan and of the rhodamine-tagged hyaluronate were confirmed by fluorescence microscopy. Photodynamic experiments revealed good cell photocytotoxicity of the photosensitizers entrapped in the nanogels. In a mouse model of rheumatoid arthritis, injection of free photosensitizers resulted in their rapid clearance from the joints, while nanogel-encapsulated photosensitizers were retained in the inflamed joints over a longer period of time. The photodynamic treatment of the inflamed joints resulted in a reduction of inflammation comparable to a standard corticoid treatment. Thus, hyaluronate-chitosan nanogels encapsulating therapeutic agents are promising materials for the targeted delivery to macrophages and long-term retention of therapeutics in leaky inflamed articular joints.
Resumo:
T cell activation by the specific Ag results in dramatic changes of the T cell phenotype that include a rapid and profound down-regulation and degradation of triggered TCRs. In this work, we investigated the fate of the TCR-associated ZAP-70 kinase in Ag-stimulated T cells. T cells stimulated by peptide-pulsed APCs undergo an Ag dose-dependent decrease of the total cellular content of ZAP-70, as detected by FACS analysis and confocal microscopy on fixed and permeabilized T cell-APC conjugates and by Western blot on total cell lysates. The time course of ZAP-70 consumption overlaps with that of zeta-chain degradation, indicating that ZAP-70 is degraded in parallel with TCR internalization and degradation. Pharmacological activation of protein kinase C (PKC) does not induce ZAP-70 degradation, which, on the contrary, requires activation of protein tyrosine kinases. Two lines of evidence indicate that the Ca2+-dependent cysteine protease calpain plays a major role in initiating ZAP-70 degradation: 1) treatment of T cells with cell-permeating inhibitors of calpain markedly reduces ZAP-70 degradation; 2) ZAP-70 is cleaved in vitro by calpain. Our results show that, in the course of T cell-APC cognate interaction, ZAP-70 is rapidly degraded via a calpain-dependent mechanism.
Resumo:
Purpose: Pathologic choroidal neovascularizations (CNV) are implicated in the wet form of age-related macular degeneration (ARMD). Abnormal vessel growth is also observed in disease when hypoxia and/or inflammation occur. Our goal is to establish a standard protocol of laser-induced CNV in mice that have different levels of pigmentation to identify the most reliable animal model.Methods: CNV was induced by 4 burns around the optic disk, using a green argon laser (100μm diameter spot size; 0,05 sec. duration) in C57/Bl6, DBA/1 and Balb/c to ascertain the efficacy of the method in function of retina pigmentation. Five different intensities were tested and Bruch's membrane disruption was identified by the appearance of a bubble at the site of photocoagulation. Fluorescein angiographies (FA) were undertaken 14 days post lesion and CNV area was quantified by immunohistochemistry on cryosections.Results: CNV retina area was related to spot intensity after laser injury. While 180mW and 200mW do not induce reliable CNV (respectively 27.85±0.35% and 29±1.67% of the retina surface), 260mW is required to induce 51,07±8.52% of CNV in C57/Bl6 mice. For the DBA/1 strain, less pigmented, 200mW was sufficient to induce 49.35±3.9% of CNV, indicating that lower intensity are required to induce CNV. Furthermore, an intensity of 180mW induced greater CNV (35.55±6.01%) than in C57/Bl6 mice. Nevertheless, laser did not induce reproducible 50% CNV in Balb/c albino mice for all intensities tested. Isolectin-B4 and GFAP stainings revealed neovessel formation and photoreceptor (PR) degeneration at the impact site. The presence of glia was observed throughout all the retinal layers and angiograms showed fluorescein leakage in pigmented mice.Conclusions: The establishment of a standard protocol to induce CNV and subsequent PR degeneration is of prime importance for the use of the laser-induced CNV model and will allow to evaluate the therapeutic potency of agents to prevent CNV and retinal degeneration.
Resumo:
Despite the fact that in living cells DNA molecules are long and highly crowded, they are rarely knotted. DNA knotting interferes with the normal functioning of the DNA and, therefore, molecular mechanisms evolved that maintain the knotting and catenation level below that which would be achieved if the DNA segments could pass randomly through each other. Biochemical experiments with torsionally relaxed DNA demonstrated earlier that type II DNA topoisomerases that permit inter- and intramolecular passages between segments of DNA molecules use the energy of ATP hydrolysis to select passages that lead to unknotting rather than to the formation of knots. Using numerical simulations, we identify here another mechanism by which topoisomerases can keep the knotting level low. We observe that DNA supercoiling, such as found in bacterial cells, creates a situation where intramolecular passages leading to knotting are opposed by the free-energy change connected to transitions from unknotted to knotted circular DNA molecules.
Resumo:
The authors report a case of unilateral, stable, localized, and well-circumscribed choriocapillaris atrophy associated with retinal pigment epithelium dispersion and atrophy. The anterior segment was normal. Facial examination revealed a homolateral malar hypoplasia. The other eye was normal. The electrophysiologic study did not confirm pigmentary degeneration of the retina. The patient's history included a difficult delivery using obstetrical forceps. The authors review the main ocular lesions secondary to birth trauma. In this case, they favored a traumatic chorioretinal lesion secondary to an obstetrical traumatism. In this context, progressive facial hemiatrophy is the main differential diagnosis.
Resumo:
BACKGROUND: Multiple evanescent white dot syndrome (MEWDS) is a benign acquired isolated chorioretinal disorder. Symptoms include photopsia, visual blur and scotomas. Ocular examination reveals multiple white dots at the level of the deep retina. A parainfectious disorder was suggested but the exact mechanism of MEWDS is still unknown. Postulating that MEWDS might be an antigen driven inflammatory reaction, we analyzed HLA subtypes in patients with MEWDS. PATIENTS AND METHODS: Sixteen patients were diagnosed with MEWDS in Lausanne from 1985 to 1994. Blood was withdrawn in 9/16 patients. HLA-A, -B and -DR were sought. RESULTS: HLA-B51 was detected in 4/9 patients (44.4%). Other HLA subtypes were detected sporadically. CONCLUSIONS: The frequency of HLA-B51 haplotype was found to be 3.7 times more elevated than in a normal control caucasian group. This suggests the possibility that MEWDS might be a genetically determined disorder as it is the case for other ocular diseases like Birdshot chorioretinopathy (HLA-A29), Harada's disease (HLA-DRMT3), acute anterior uveitis (HLA-B27) or Behçet's disease (HLA-B51). We have no explanation for the presence of HLA-B51 in both Behçet's disease and MEWDS. The association of HLA-B51 and MEWDS needs confirmation by further testing.
Resumo:
Most bacterial chromosomes contain homologs of plasmid partitioning (par) loci. These loci encode ATPases called ParA that are thought to contribute to the mechanical force required for chromosome and plasmid segregation. In Vibrio cholerae, the chromosome II (chrII) par locus is essential for chrII segregation. Here, we found that purified ParA2 had ATPase activities comparable to other ParA homologs, but, unlike many other ParA homologs, did not form high molecular weight complexes in the presence of ATP alone. Instead, formation of high molecular weight ParA2 polymers required DNA. Electron microscopy and three-dimensional reconstruction revealed that ParA2 formed bipolar helical filaments on double-stranded DNA in a sequence-independent manner. These filaments had a distinct change in pitch when ParA2 was polymerized in the presence of ATP versus in the absence of a nucleotide cofactor. Fitting a crystal structure of a ParA protein into our filament reconstruction showed how a dimer of ParA2 binds the DNA. The filaments formed with ATP are left-handed, but surprisingly these filaments exert no topological changes on the right-handed B-DNA to which they are bound. The stoichiometry of binding is one dimer for every eight base pairs, and this determines the geometry of the ParA2 filaments with 4.4 dimers per 120 A pitch left-handed turn. Our findings will be critical for understanding how ParA proteins function in plasmid and chromosome segregation.
Resumo:
We have recently shown that immunophotodetection of human colon carcinomas in nude mice and in patients is possible by using anti-carcinoembryonic antigen monoclonal antibodies (MAb) coupled to fluorescein. The most common clinical application of photodiagnosis has been for the detection of squamous cell carcinomas (SCC) in the upper respiratory tract, but the free dyes used have a poor tumor selectivity. We selected the known MAb E48 directed against SCC and coupled it to a fluorescent dye: indopentamethinecyanin (indocyanin). This dye has an advantage over fluorescein in that it emits a more penetrating fluorescent red signal at 667 nm after excitation with a laser ray of 640 nm. In vitro, an conjugate with an indocyanin:MAb molar ratio of 2, and an additional trace labeling with 125I, showed more than 80% of binding to cells from the SCC line A431. In vivo, when injected i.v. into nude mice bearing xenografts of the same carcinoma line, the MAb E48-(indocyanin)2 conjugate was almost as efficient as the unconjugated MAb E48 in terms of specific tumor localization: 15% of the injected dose per g of tumor at 24 h after injection and a tumor:overall normal tissue ratio of 6-8. There was no selective tumor localization of an irrelevant IgG1-(indocyanin)2 conjugate. Immunophotodetection of the s.c. SCC xenografts on mice given injections of 100 micrograms of MAb E48-(indocyanin), conjugate (representing 1 microgram of indocyanin) was performed at 24 h. Upon laser irradiation, clearly detectable red fluorescence from the indocyanin-MAb conjugate was observed specifically in the SCC xenografts across the mouse skin. In comparison, injection of 100 micrograms of a MAb E48 coupled to 2 micrograms of fluorescein gave a specific green fluorescence signal in the tumor xenografts, which was detectable, however, only after removing the mouse skin. Injection i.v. of a 15 times higher amount of free indocyanin (15 micrograms) gave a diffuse red fluorescence signal all over the mouse body with no definite increase in intensity in the tumor, indicating a lack of tumor selectivity of the free dye. The results demonstrate the possibility of broadening and improving the efficiency of tumor immunophotodiagnosis by coupling to a MAb directed against SCC, a fluorescent dye absorbing and emitting at higher wavelength than fluorescein, and thus having deeper tissue penetration and lower tissue autofluorescence. Such a demonstration opens the way to a new form of clinical immunophotodiagnosis and possibly to the development of a more specific approach to phototherapy of early bronchial carcinomas.
Resumo:
In an acidic protein medium Aspergillus fumigatus secretes an aspartic endoprotease (Pep) as well as tripeptidyl-peptidases, a prolyl-peptidase and carboxypeptidases. In addition, LC-MS/MS revealed a novel glutamic protease, AfuGprA, homologous to Aspergillus niger aspergillopepsin II. The importance of AfuGprA in protein digestion was evaluated by deletion of its encoding gene in A. fumigatus wild-type D141 and in a pepΔ mutant. Either A. fumigatus Pep or AfuGprA was shown to be necessary for fungal growth in protein medium at low pH. Exoproteolytic activity is therefore not sufficient for complete protein hydrolysis and fungal growth in a medium containing proteins as the sole nitrogen source. Pep and AfuGprA constitute a pair of endoproteases active at low pH, in analogy to A. fumigatus alkaline protease (Alp) and metalloprotease I (Mep), where at least one of these enzymes is necessary for fungal growth in protein medium at neutral pH. Heterologous expression of AfuGprA in Pichia pastoris showed that the enzyme is synthesized as a preproprotein and that the propeptide is removed through an autoproteolytic reaction at low pH to generate the mature protease. In contrast to A. niger aspergillopepsin II, AfuGprA is a single-chain protein and is structurally more similar to G1 proteases characterized in other non-Aspergillus fungi.
Resumo:
RecA protein in bacteria and its eukaryotic homolog Rad51 protein are responsible for initiation of strand exchange between homologous DNA molecules. This process is crucial for homologous recombination, the repair of certain types of DNA damage and for the reinitiation of DNA replication on collapsed replication forks. We show here, using two different types of in vitro assays, that in the absence of ATP hydrolysis RecA-mediated strand exchange traverses small substitutional heterologies between the interacting DNAs, whereas small deletions or insertions block the ongoing strand exchange. We discuss evolutionary implications of RecA selectivity against insertions and deletions and propose a molecular mechanism by which RecA can exert this selectivity.
Resumo:
UV−excimer laser photoablation was used, in combination with surface blocking techniques, to pattern proteins on the surfaces of polyimide and poly(ethylene terephthalate). This technique involves physical adsorption of avidin through laser-defined openings in low-temperature laminates or adsorbed protein blocking layers. Visualization of biomolecular patterns were monitored using avidin and fluorescein-labeled biotin as a model receptor−ligand couple. Adsorbed proteins could be shown to bind to UV-laser-treated polymer surfaces up to three times higher than on commercially available polymers. UV-laser photoablation was also used for the generation of three-dimensional structure, which leads to the possibility of biomolecule patterning within polymer-based microanalytical systems. The simplicity and easy handling of the described technique facilitate its application in microdiagnostic devices.
Resumo:
Normalerweise eine Störung der ersten Schwangerschaft, ist die Präeklampsie charakterisiert durch eine arterielle Hypertonie (> 140 mmHg systolisch oder > 90 mmHg diastolisch), die in der Regel nach der 20. Schwangerschaftswoche auftritt und von einer Proteinurie begleitet wird [1]. Die Präeklampsie wird als ,,schwer" bezeichnet, wenn sie mit einer wesentlichen Erhöhung des Blutdrucks (> 160 mmHg systolisch oder > 110 mmHg diastolisch), schwerer Proteinurie, Oligurie, Lungenödem, abdominalen Schmerzen, Leberfunktionsstörungen, Thrombozytopenie und visuellen oder zerebralen Symptomen einhergeht. Eine Eklampsie wiederum ist durch die Entwicklung von tonisch-klonischen Anfällen bei einer präeklamptischen Patientin charakterisiert. Bei der Alpha-Thalassämie tritt ein Defekt von 2 oder mehr der 4 Alpha-Globin-Gene auf. Von einer Alpha-Thalassämie minor spricht man, wenn 2 Alpha-Ketten-Gene deletiert sind. Sie tritt häufig bei Menschen aus Afrika, Südostasien, dem westindischen und mediterranen Raum auf. Die Alpha-Thalassämie minor verursacht eine milde bis moderate mikrozytäre Anämie. Wir berichten über eine Patientin mit peripherer okklusiver Vaskulopathie im Rahmen einer kombinierten Präeklampsie und Alpha-Thalassämie minor.