224 resultados para Repeat moves
Resumo:
Telomerase activity (TA) is detected in most human cancers but, with few exceptions, not in normal somatic cells. Little is known about TA in soft tissue tumors. We have examined a series of benign and malignant soft tissue tumors for TA using the telomerase repeat amplification protocol assay. Analysis of the expression of the human telomerase reverse transcriptase was also carried out using RT-PCR. TA was undetectable in benign lesions (15 of 15) and low-grade sarcomas (6 of 6) and was detectable in 50% (19 of 38) of intermediate-/high-grade sarcomas. Although the presence of TA in soft tissue tumors is synonymous with malignancy, it is neither a reliable method in making the distinction between reactive/benign and malignant (especially low-grade) lesions nor a reliable marker of tumor aggressiveness. Leiomyosarcomas and storiform/pleomorphic malignant fibrous histiocytomas rarely showed TA, irrespective of their grade. A strong correlation between human telomerase reverse transcriptase mRNA expression and TA was observed, supporting the close relationship between both parameters. No significant relationship was observed between proliferative activity (as assessed by MIB-1 immunolabeling) and TA. We verified that the absence of telomerase expression was not due to the presence of telomerase inhibitors and therefore alternative mechanism(s) for cell immortalization, yet to be determined, seem to be involved in the development and/or maintenance of some soft tissue sarcomas.
Resumo:
Introduction: Coronary magnetic resonance angiography (MRA) is a medical imaging technique that involves collecting data from consecutive heartbeats, always at the same time in the cardiac cycle, in order to minimize heart motion artifacts. This technique relies on the assumption that coronary arteries always follow the same trajectory from heartbeat to heartbeat. Until now, choosing the acquisition window in the cardiac cycle was based exclusively on the position of minimal coronary motion. The goal of this study was to test the hypothesis that there are time intervals during the cardiac cycle when coronary beat-to-beat repositioning is optimal. The repositioning uncertainty values in these time intervals were then compared with the intervals of low coronary motion in order to propose an optimal acquisition window for coronary MRA. Methods: Cine breath-hold x-ray angiograms with synchronous ECG were collected from 11 patients who underwent elective routine diagnostic coronarography. Twenty-three bifurcations of the left coronary artery were selected as markers to evaluate repositioning uncertainty and velocity during cardiac cycle. Each bifurcation was tracked by two observers, with the help of a user-assisted algorithm implemented in Matlab (The Mathworks, Natick, MA, USA) that compared the trajectories of the markers coming from consecutive heartbeats and computed the coronary repositioning uncertainty with steps of 50ms until 650ms after the R-wave. Repositioning uncertainty was defined as the diameter of the smallest circle encompassing the points to be compared at the same time after the R-wave. Student's t-tests with a false discovery rate (FDR, q=0.1) correction for multiple comparison were applied to see whether coronary repositioning and velocity vary statistically during cardiac cycle. Bland-Altman plots and linear regression were used to assess intra- and inter-observer agreement. Results: The analysis of left coronary artery beat-to-beat repositioning uncertainty shows a tendency to have better repositioning in mid systole (less than 0.84±0.58mm) and mid diastole (less than 0.89±0.6mm) than in the rest of the cardiac cycle (highest value at 50ms=1.35±0.64mm). According to Student's t-tests with FDR correction for multiple comparison (q=0.1), two intervals, in mid systole (150-200ms) and mid diastole (550-600ms), provide statistically better repositioning in comparison with the early systole and the early diastole. Coronary velocity analysis reveals that left coronary artery moves more slowly in end systole (14.35±11.35mm/s at 225ms) and mid diastole (11.78±11.62mm/s at 625ms) than in the rest of the cardiac cycle (highest value at 25ms: 55.96±22.34mm/s). This was confirmed by Student's t-tests with FDR correction for multiple comparison (q=0.1, FDR-corrected p-value=0.054): coronary velocity values at 225, 575 and 625ms are not much different between them but they are statistically inferior to all others. Bland-Altman plots and linear regression show that intra-observer agreement (y=0.97x+0.02 with R²=0.93 at 150ms) is better than inter-observer (y=0.8x+0.11 with R²=0.67 at 150ms). Discussion: The present study has demonstrated that there are two time intervals in the cardiac cycle, one in mid systole and one in mid diastole, where left coronary artery repositioning uncertainty reaches points of local minima. It has also been calculated that the velocity is the lowest in end systole and mid diastole. Since systole is less influenced by heart rate variability than diastole, it was finally proposed to test an acquisition window between 150 and 200ms after the R-wave.
Resumo:
The classical minor lymphocyte stimulating (Mls) antigens, which induce a strong primary T cell response in vitro, are closely linked to endogenous copies of mouse mammary tumor viruses (MMTV). Expression of Mls genes leads to clonal deletion of T cell subsets expressing specific T cell receptor (TCR) V beta chains. We describe the isolation and characterization of a new exogenous (infectious) MMTV with biological properties similar to the Mls antigen Mls-1a. In vivo administration of either Mls-1a-expressing B cells or the infectious MMTV (SW) led to an increase of T cells expressing V beta 6 followed by their deletion. Surprisingly, different kinetics of deletion were observed with the exogenous virus depending upon the route of infection. Infection through the mucosa led to a slow deletion of V beta 6+ T cells, whereas deletion was rapid after subcutaneous infection. Sequence analysis of the open reading frames in the 3' long terminal repeat of both this exogenous MMTV (SW) and of Mtv-7 (which is closely linked to Mls-1a) revealed striking similarities, particularly in the COOH terminus, which has been implicated in TCR V beta recognition. The identification of an infectious MMTV with the properties of a strong Mls antigen provides a new, powerful tool to study immunity and tolerance in vivo.
Resumo:
Minor lymphocyte stimulating (Mls) antigens specifically stimulate T cell responses that are restricted to particular T cell receptor (TCR) beta chain variable domains. The Mls phenotype is genetically controlled by an open reading frame (orf) located in the 3' long terminal repeat of mouse mammary tumor virus (MMTV); however, the mechanism of action of the orf gene product is unknown. Whereas predicted orf amino acid sequences show strong overall homology, the 20-30 COOH-terminal residues are strikingly polymorphic. This polymorphic region correlates with TCR V beta specificity. We have generated monoclonal antibodies to a synthetic peptide encompassing the 19 COOH-terminal amino acid residues of Mtv-7 orf, which encodes the Mls-1a determinant. We show here that these antibodies block Mls responses in vitro and can interfere specifically with thymic clonal deletion of Mls-1a reactive V beta 6+ T cells in neonatal mice. Furthermore, the antibodies can inhibit V beta 6+ T cell responses in vivo to an infectious MMTV that shares orf sequence homology and TCR specificity with Mtv-7. These results confirm the predicted extracellular localization of the orf COOH terminus and imply that the orf proteins of both endogenous and exogenous MMTV interact directly with TCR V beta.
Resumo:
The purpose of this study was to test the hypothesis that athletes having a slower oxygen uptake ( VO(2)) kinetics would benefit more, in terms of time spent near VO(2max), from an increase in the intensity of an intermittent running training (IT). After determination of VO(2max), vVO(2max) (i.e. the minimal velocity associated with VO(2max) in an incremental test) and the time to exhaustion sustained at vVO(2max) ( T(lim)), seven well-trained triathletes performed in random order two IT sessions. The two IT comprised 30-s work intervals at either 100% (IT(100%)) or 105% (IT(105%)) of vVO(2max) with 30-s recovery intervals at 50% of vVO(2max) between each repeat. The parameters of the VO(2) kinetics (td(1), tau(1), A(1), td(2), tau(2), A(2), i.e. time delay, time constant and amplitude of the primary phase and slow component, respectively) during the T(lim) test were modelled with two exponential functions. The highest VO(2) reached was significantly lower ( P<0.01) in IT(100%) run at 19.8 (0.9) km(.)h(-1) [66.2 (4.6) ml(.)min(-1.)kg(-1)] than in IT(105%) run at 20.8 (1.0) km(.)h(-1) [71.1 (4.9) ml(.)min(-1.)kg(-1)] or in the incremental test [71.2 (4.2) ml(.)min(-1.)kg(-1)]. The time sustained above 90% of VO(2max) in IT(105%) [338 (149) s] was significantly higher ( P<0.05) than in IT(100%) [168 (131) s]. The average T(lim) was 244 (39) s, tau(1) was 15.8 (5.9) s and td(2) was 96 (13) s. tau(1) was correlated with the difference in time spent above 90% of VO(2max) ( r=0.91; P<0.01) between IT(105%) and IT(100%). In conclusion, athletes with a slower VO(2) kinetics in a vVO(2max) constant-velocity test benefited more from the 5% rise of IT work intensity, exercising for longer above 90% of VO(2max) when the IT intensity was increased from 100 to 105% of vVO(2max).
Resumo:
Anomalous activations of the prefrontal cortex (PFC) and posterior cerebral areas have been reported in previous studies of working memory in schizophrenia. Several interpretations have been reported: e.g., neural inefficiency, the use of different strategies and differences in the functional organization of the cerebral cortex. To better understand these abnormal activations, we investigated the cerebral bases of a working memory component process, namely refreshing (i.e., thinking briefly of a just-activated representation). Fifteen patients with schizophrenia and 15 control subjects participated in this functional magnetic resonance imaging (fMRI) study. Participants were told that whenever they saw a word on the screen, they had to read it silently to themselves (read and repeat conditions), and when they saw a dot, they had to think of the just-previous word (refresh condition). The refresh condition (in comparison with the read condition) was associated with significantly increased activation in the left inferior frontal gyrus and significantly decreased connectivity within the prefrontal cortex and between the prefrontal and parietal cortices in patients with schizophrenia in comparison with control subjects. These results suggest that prefrontal dysfunctions in schizophrenia might be related to a defective ability to initiate (rather than to execute) specific cognitive processes.
Resumo:
Microtubule-associated protein 2 (MAP2) exists in both high- and low-molecular mass isoforms, each of which has a tubulin-binding domain consisting of 3 imperfect tandem repeats of 31 amino acids containing a more highly conserved 18 amino acid 'core' sequence. We describe here a novel form of low molecular mass MAP2 (MAP2c) that contains an additional 4th repeat of this tubulin-binding motif. Like the 3 previously known repeat sequences, this 4th copy is highly conserved between MAP2 and the two other known members of the same gene family, tau and MAP4. In each of these three genes the additional 4th repeat is inserted between the 1st and 2nd repeats of the 3-repeat form of the molecule. Experiments with brain cell cultures, in which the relative proportions of neurons and glia had been manipulated by drug treatment, showed that 4-repeat MAP2c is associated with glial cells whereas 3-repeat MAP2c is expressed in neurons. Whereas 3-repeat MAP2c is expressed early in development and then declines, the level of 4-repeat MAP2c increases later in development, corresponding to the relatively late differentiation of glial cells compared to neurons. When transfected into non-neuronal cells, the 4-repeat version of MAP2c behaved indistinguishably from the 3-repeat form in stabilising and rearranging cellular microtubules. The presence of an additional 4th repeat of the tubulin-binding motif in all three members of the MAP2 gene family suggests that this variant arose prior to their differentiation from an ancestral gene.
Resumo:
The field of classical studies has undergone a radical transformation with the arrival of the digital age, particularly with regard to the editing of ancient texts. As Umberto Eco (2003) pointed out, the digital age may mean the end of the history of variants and of the notion of the "original text." Among the texts of antiquity, the editing of Homer and of the New Testament are more especially susceptible to the effects of digital technology because of their numerous manuscripts. Whereas the "Homer Multitext" project recognizes that the notion of a synthetic critical edition is now seriously brought into question, the prototype of the online Greek New Testament continues to be based on the aim of obtaining a unique text, in the style of a printed critical edition. As it moves from a printed culture to the digital age, the editing of the Greek NT is also confronted by the emergence of non-Western scholarship. For example, the presence is to be noted of Arabic Muslim websites that examine Greek New Testament manuscripts but without directly interacting with Western scholarship.
Resumo:
Forest fire sequences can be modelled as a stochastic point process where events are characterized by their spatial locations and occurrence in time. Cluster analysis permits the detection of the space/time pattern distribution of forest fires. These analyses are useful to assist fire-managers in identifying risk areas, implementing preventive measures and conducting strategies for an efficient distribution of the firefighting resources. This paper aims to identify hot spots in forest fire sequences by means of the space-time scan statistics permutation model (STSSP) and a geographical information system (GIS) for data and results visualization. The scan statistical methodology uses a scanning window, which moves across space and time, detecting local excesses of events in specific areas over a certain period of time. Finally, the statistical significance of each cluster is evaluated through Monte Carlo hypothesis testing. The case study is the forest fires registered by the Forest Service in Canton Ticino (Switzerland) from 1969 to 2008. This dataset consists of geo-referenced single events including the location of the ignition points and additional information. The data were aggregated into three sub-periods (considering important preventive legal dispositions) and two main ignition-causes (lightning and anthropogenic causes). Results revealed that forest fire events in Ticino are mainly clustered in the southern region where most of the population is settled. Our analysis uncovered local hot spots arising from extemporaneous arson activities. Results regarding the naturally-caused fires (lightning fires) disclosed two clusters detected in the northern mountainous area.
Resumo:
Members of the leucine-rich repeat protein family are involved in diverse functions including protein phosphatase 2-inhibition, cell cycle regulation, gene regulation and signalling pathways. A novel Schistosoma mansoni gene, called SmLANP, presenting homology to various genes coding for proteins that belong to the super family of leucine-rich repeat proteins, was characterized here. SmLANP was 1184bp in length as determined from cDNA and genomic sequences and encoded a 296 amino acid open reading frame that spanning from 6 to 894bp. The predicted amino acid sequence had a calculated molecular weight of 32kDa. Analysis of the predicted sequence indicated the presence of 3 leucine-rich domains (LRR) located in the N-terminal region and an aspartic acid rich region in the C-terminal end. SmLANP transcript is expressed in all stages of the S. mansoni life cycle analyzed, exhibiting the highest expression level in males. The SmLANP protein was expressed in a GST expression system and antibodies raised in mice against the recombinant protein. By immunolocalization assay, using adult worms, it was shown that the protein is mainly present in the cell nucleus through the whole body and strongly expressed along the tegument cell body nuclei of adult worms. As members of this family are usually involved in protein-protein interaction, a yeast two hybrid assay was conducted to identify putative binding partners for SmLANP. Thirty-six possible partners were identified, and a protein ATP synthase subunit alpha was confirmed by pull down assays, as a binding partner of the SmLANP protein.
Resumo:
Nuclear DNA markers, such as short tandem repeats (STR), are widely used for crime investigation and paternity testing. STR were used to determine whether a piece of tissue regurgitated by a dog was part of the penis of a dead, emasculated, man. Unexpectedly, when analyzing the recovered material and a blood sample from the deceased, five out of the 18 loci differed. According to the results, one could have concluded that these samples originated from two different persons. However, taking into account contextual information and data from complementary genetic analyses, the most likely hypothesis was that the deceased was a genetic mosaic or a chimera. Within a forensic genetic context, such genetic peculiarities may prevent associating the perpetrator of an offense with a stain left at a crime scene or lead to false paternity exclusions. Fast recognition of mosaics or chimeras, adapted sampling scheme, as well as careful interpretation of the data should allow avoiding such pitfalls.
Resumo:
Friedreich's ataxia (FRDA), the most common autosomal recessive ataxia, is characterised by progressive ataxia with dysarthria of speech, loss of deep-tendon reflexes, impaired vibratory and proprioceptive sensations and corticospinal weakness with a Babinski's sign. Patients eventually also develop kyphoscoliosis, cardiomyopathy and diabetes mellitus. The disease is a GAA repeat disorder resulting in severely reduced levels of frataxin, with secondary increased sensitivity to oxidative stress. The anti-oxidative drug, idebenone, is effective against FRDA-associated cardiomyopathy. We provide detailed clinical, electrophysiological and biochemical data from 20 genetically confirmed FRDA patients and have analysed the relationship between phenotype, genotype and malondialdehyde (MDA), which is a marker of superoxide formation. We assessed the effects of idebenone biochemically by measuring blood MDA and clinically by serial measurements of the International Cooperative Ataxia Rating Scale (ICARS). The GAA repeat length influenced the age at onset (p <0.001), the severity of ataxia (p = 0.02), the presence of cardiomyopathy (p = 0.04) and of low-frequency hearing loss (p = 0.009). Multilinear regression analysis showed (p = 0.006) that ICARS was dependent on the two variables of disease duration (p = 0.01) and size of the GAA expansion (p = 0.02). We found no correlation to bilateral palpebral ptosis, visual impairment, diabetes mellitus or skeletal deformities, all of which appear to be signs of disease progression rather than severity. We discuss more thoroughly two underrecognised clinical findings: palpebral ptosis and GAA length-dependent low-frequency hearing loss. The average ICARS remained unchanged in 10 patients for whom follow-up on treatment was available (mean 2.9 years), whereas most patients treated with idebenone reported an improvement in dysarthria (63%), hand dexterity (58%) and fatigue (47%) after taking the drug for several weeks or months. Oxidative stress analysis showed an unexpected increase in blood MDA levels in patients on idebenone (p = 0.04), and we discuss the putative underlying mechanism for this result, which could then explain the unique efficacy of idebenone in treating the FRDA-associated cardiomyopathy, as opposed to other antioxidative drugs. Indeed, idebenone is not only a powerful stimulator of complexes II and III of the respiratory chain, but also an inhibitor of complex I activity, then promoting superoxide formation. Our preliminary clinical observations are the first to date supporting an effect of idebenone in delaying neurological worsening. Our MDA results point to the dual effect of idebenone on oxidative stress and to the need for controlled studies to assess its potential toxicity at high doses on the one hand, and to revisit the exact mechanisms underlying the physiopathology of Friedreich's ataxia on the other hand, while recent reports suggest non-oxidative pathophysiology of the disease.
Resumo:
Résumé Les télomères sont les structures ADN-protéines des extrémités des chromosomes des eucaryotes. L'ADN télomérique est constitué de courtes séquences répétitives. L'intégrité des télomères est essentielle pour protéger les extrémités des chromosomes contre les systèmes de dégradations et pour les distinguer des cassures de l'ADN double brin. Parce que la machinerie de la réplication de l'ADN n'est pas capable de répliquer l'extrémité des chromosomes, les télomères raccourcissent au fur et à mesure des cycles de réplication. Dès que les télomères atteignent une longueur critique, leur structure protectrice est perdue. Cela induit un signal de dommage de l'ADN et l'arrêt du cycle cellulaire. Pour contrebalancer le raccourcissement des télomères, les cellules qui s'auto régénèrent, dont les cellules de la moelle osseuse, les lymphocytes activés et 80-90% des cellules cancéreuses, expriment la télomérase. C'est une ribonucléoprotéine qui a la capacité de synthétiser des séquences télomériques par transcription inverse d'une courte séquence contenue dans sa propre sous-unité ARN avec laquelle elle est associée. La télomérase humaine est une enzyme processive au niveau de l'addition des nucléotides et aussi des répétitions télomériques. La télomérase de levure et la télomérase humaine sont toutes deux dimériques et il a été montré que la télomérase humaine recombinante contient deux ARN qui coopèrent pour fonctionner ainsi que deux sous-unités catalytiques. Cependant, il n'a pas encore été montré quel est le rôle de la dimérisation dans l'activité de la télomérase. Afin d'élucider ce rôle, nous avons exprimé, reconstitué et purifié la télomérase humaine dimérique recombinante. Et pour étudier l'effet d'ARN mutants sur l'activité de la télomérase, nous avons développé une méthode pour reconstituer et enrichir en hétérodimères de télomérase. Les hétérodimères contiennent une sous-unité ARN sauvage et une sous-unité ARN mutée au niveau de la séquence de la matrice. Sur l'ARN muté nous avons introduit une étiquette aptamer ARN-S1 puis nous avons purifié la télomérase via l'etiquette Si. Nous avons montré que la dimérisation est essentielle pour l'activité de la télomérase. Nos données indiquent que chaque télomérase du dimère allonge leur substrat, l'ADN télomérique, indépendamment l'une de l'autre à chaque cycle d'élongation mais que l'addition itérative de répétitions télomériques nécessite une coopération entre les deux télomérases du dimère. Nous proposons donc un modèle dans lequel les deux télomérases du dimères se lient et allongent deux substrats télomères et que pendant l'élongation processive les deux enzymes subissent un changement de conformation de manière coordonnée, ce changement va permettre le repositionnement des substrats pour d'autres cycles d'additions de répétitions télomériques. Dyskeratosis congenita est une maladie mortelle due majoritairement au disfonctionnement de la moelle osseuse. Dans la forme autosomale de la maladie, l'ARN de la télomérase contient des mutations. En utilisant notre système de reconstitution, nous avons montré que ces ARN mutés, qui ont perdu leur activité enzymatique dans le cas d'un homodimère de mutants, sont dominant négatifs quand ils sont présents dans les hétérodimères sauvage/mutant. Cet effet trans-dominant négatif pourrait contribuer à la progression de la maladie. Abstract Telomeres are protein-DNA structures at the ends of linear eukaryotic chromosomes. The telomeric DNA consists of tandemly repeated sequences. Telomeric integrity is essential to protect chromosomal ends from nucleolytic degradation and to prevent their recognition as DNA double strand breaks. Due to the inability of the conventional DNA replication machinery to replicate terminal DNA stretches, telomeres shorten with continuous rounds of DNA replication. As soon as telomeres reach a critical length, their protective structure is lost and the deprotected telomeres will induce a DNA damage response leading to cell cycle arrest. To counteract telomere shortening, self-renewing cells, including bone marrow cells, activated lymphocytes and 80-90% of cancer cells express the cellular reverse transcriptase telomerase, which has the capacity to synthesize telomeric repeats by reverse transcription of a short template sequence encoded by its stably associated RNA subunit. Human telomerase is a processive enzyme for nucleotide as well as repeat addition. Both yeast and human telomerase are dimeric enzymes and recombinant human telomerase has been shown to contain two functionally cooperating RNAs and most probably also two protein subunits. However, it has remained unclear how dimerization may contribute to telomerase activity. To study the role of dimerization, we expressed, reconstituted and purified recombinant human telomerase. We also developed a new method to reconstitute and enrich for telomerase heterodimers containing wild-type (wt) and mutant telomerase RNA subunits. To this end we introduced an S1-RNA-aptamer tag into telomerase RNA and purified telomerase reconstituted with a mixture of untagged and tagged RNA via the S1-tag. Using this experimental system, we introduced template mutations in the tagged RNA subunit and examined the effect of mutant RNAs on wt telomerase activity in wt/mutant heterodimers. We obtained evidence that dimerization is essential for telomerase activity. Our data indicate that the two subunits elongate telomere substrates independently of each other during single rounds of elongation, but that iterative addition of telomeric repeats requires cooperation between the two subunits. We suggest a model, in which dimeric telomerases bind and elongate two telomere substrates and that the two subunits undergo coordinated conformational changes during processive elongation that enable repositioning the substrates for subsequent rounds of repeat addition. Dyskeratosis congenita is a multisystemic disease with bone marrow failure as the major cause of death. The autosomal form of this disease was found to harbor mutations in the telomerase RNA. Using our reconstitution system, we tested whether mutant dyskeratosis telomerase RNAs behaved in a dominant negative manner. We observed that dyskeratosis telomerase RNA mutants, which lacked enzymatic activity were dominant negative, when present in wt/ mutant heterodimers. The transdominant negative effect of these mutants may contribute to disease progression.
Resumo:
The aberrant transcription factor EWS-FLI1 drives Ewing sarcoma, but its molecular function is not completely understood. We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcoma by directly inducing or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors. These divergent chromatin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators while activating oncogenes and potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation.
Resumo:
Abstract Genetic studies have shown an association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the catalytic subunit (GCLC) of the glutamate cysteine ligase (GCL), the key enzyme for glutathione (GSH) synthesis. The present study was aimed at analyzing the influence of a GSH dysregulation of genetic origin on plasma thiols (total cysteine, homocysteine, and cysteine-glycine) and other free amino acid levels as well as fibroblast cultures GSH levels. Plasma thiols levels were also compared between patients and controls. As compared with patients with a low-risk GCLC GAG TNR genotype, patients with a high-risk genotype, having an impaired GSH synthesis, displayed a decrease of fibroblast GSH and plasma total cysteine levels, and an increase of the oxidized form of cysteine (cystine) content. Increased levels of plasma free serine, glutamine, citrulline, and arginine were also observed in the high-risk genotype. Taken together, the high-risk genotypes were associated with a subgroup of schizophrenia characterized by altered plasma thiols and free amino acid levels that reflect a dysregulation of redox control and an increased susceptibility to oxidative stress. This altered pattern potentially contributes to the development of a biomarker profile useful for early diagnosis and monitoring the effectiveness of novel drugs targeting redox dysregulation in schizophrenia. Antioxid. Redox Signal. 15, 2003-2010.