121 resultados para Polymer host
Resumo:
Le protozoaire unicellulaire Leishmania est l'agent responsable de la leishmaniose, une maladie parasitaire humaine qui se manifeste par des lésions de la peau, se résolvant le plus souvent spontanément, jusqu'à des lésions viscérales fatales. Le parasite est transmis de l'insecte à l'hôte mammifère lors d'un repas sanguin de la mouche des sables et y réside respectivement sous formes extra- et intracellulaires. On estime que cette maladie touche environ 12 millions de personnes dans 98 pays. Etant donné que les médicaments disponibles à ce jour sont faiblement efficaces et/ou hautement toxiques, il est indispensable de consolider les connaissances sur le fonctionnement et la survie du parasite pour pouvoir développer de nouvelles stratégies de traitements et de préventions. Tous les organismes vivants, dont Leishmania, contiennent du polyphopshate (polyP). Cette molécule chargée négativement est constituée de trois jusqu'à plusieurs centaines de résidus de phosphates reliées par des liaisons à haute énergie. Le polyP sert donc de source d'énergie et de réservoir de phosphate; dans certaines espèces, il joue aussi un rôle dans l'adaptation au stress et la virulence de pathogènes. Ceci nous a amené à étudier le rôle du polyP dans le parasite Leishmania. L'enzyme responsable de la synthèse de polyP a été identifié récemment dans la levure : il s'agit de la chaperone de transport vacuolaire 4 (Vtc4). Nous avons identifié un homologue de Vtc4 chez les Trypanosomatidae, et avons donc décidé d'examiner sa fonction dans le métabolisme du polyP chez Leishmania. En éliminant l'expression de Vtc4 chez L. major et L. guyanensis, nous avons pu démontrer qu'il est indispensable pour la production de polyP chez Leishmania. De plus, nous avons constaté que ces parasites possèdent des chaînes de polyP allant de trois jusqu'à environ 300 résidus de phosphate. Le taux de polyP dans la cellule est précisément régulé et varie entre un très haut niveau durant la phase proliférative des promastigotes à un niveau bas en phase stationnaire tardive, alors que l'expression de Vtc4p reste stable. Dans les amastigotes intracellulaires, seulement des petites quantités de polyP et de Vtc4p sont détectées. En outre, l'absence de Vc4p et de polyP n'a pas d'effet significatif sur les infections in vivo de souris, ce qui indique que le polyP n'est pas nécessaire au développement de la leishmaniose. Ceci suggère que Vtc4p n 'est pas une bonne cible pour le développement de nouveaux traitements contre Leishmania. "Néanmoins, la présence du polyP favorise fortement la survie du parasite suite à un choc de température (37°C) et aide ainsi à sa persistance intracellulaire pendant les premiers jours d'infection de macrophages. En résumé, nos résultats indiquent que si le polyP a peu d'importance pendant l'infection et le développement de la leishmaniose chez la souris, il est par contre crucial pour l'adaptation à des situations de stress comme l'augmentation de la température. Le fait que le polyP a été conservé dans tous les organismes durant l'évolution suggère toutefois que cette molécule joue un rôle fondamental. Etant donné que l'absence de polyP n'a pas d'effet sur la survie des amastigotes, il pourrait être plus important dans la forme promastigote infectant la mouche des sables. - The unicellular protozoan parasite Leishmania is the causative agent of the human disease leishmaniasis, which can range from self-healing skin lesions to fatal visceral lesions. The parasite is transmitted from the insect vector to the mammalian host when the sand fly takes its blood meal and exists in an extra- and an intracellular form, respectively. The disease is estimated to affect 12 million people in 98 countries and currently available drug treatments are of relatively low potency and/or high toxicity. Thus, investigating parasite survival mechanisms and parasite adaptation to the two host environments contributes to the general understanding of Leishmania propagation and might therefore help to develop future treatments or preventions. All living cells, including Leishmania, contain a negatively charged polymer of a few up to several hundred phosphate residues. These so-called polyphosphates (polyPs) serve as an energy source and phosphate reservoir. In some organisms, polyP is also involved in adaptation to stresses and virulence of pathogens. Therefore we were interested in investigating the importance of polyP in Leishmania parasites. Recently, an eukaryotic enzyme responsible for polyP synthesis has been identified as the vacuolar transporter chaperone 4 (Vtc4) in yeast. We, and others, found a Vtc4 homologue in trypanosomatids and decided to examine its potential function in polyP metabolism. By generating VTC4 knock-out cell lines in L. major and Vtc4 knock-down cell lines in L. guyanensis, we were able to demonstrate that Vtc4p is responsible for the total amount of cellular polyP. We also observed that Leishmania polyP chain length ranges from a few up to around 300 residues and that its level is tightly regulated. PolyP abundance is highest during the logarithmic proliferating phase of promastigotes and decreases in the stationary phase, while Vtc4 protein expression remains stable during both phases. In the intracellular amastigote form, only low amounts of polyP and Vtc4p were detectable. Furthermore, absence of Vtc4p and polyP did not have a significant effect on in vivo mouse infections, indicating that polyP is not necessary for Leishmania disease progression. This suggests that Vtc4p would be a poor drug target against Leishmania infection. However, presence of the polymer strongly supported parasite survival during heat shock (37°C) and thereby promoted intracellular persistence during the first days of macrophage infections. Taken together, we found that polyP has little importance in Leishmania {in vivo) infection but that it plays a crucial role during adaptation to stress, such as heat shock. Given that polyP has been preciously conserved in all organisms during evolution it seems to play a fundamental role. Since absence of polyP does not affect amastigote survival, it might be significant for promastigote existence in the sand fly vector.
Resumo:
BACKGROUND: Human immunodeficiency virus (HIV) takes advantage of multiple host proteins to support its own replication. The gene ZNRD1 (zinc ribbon domain-containing 1) has been identified as encoding a potential host factor that influenced disease progression in HIV-positive individuals in a genomewide association study and also significantly affected HIV replication in a large-scale in vitro short interfering RNA (siRNA) screen. Genes and polymorphisms identified by large-scale analysis need to be followed up by means of functional assays and resequencing efforts to more precisely map causal genes. METHODS: Genotyping and ZNRD1 gene resequencing for 208 HIV-positive subjects (119 who experienced long-term nonprogression [LTNP] and 89 who experienced normal disease progression) was done by either TaqMan genotyping assays or direct sequencing. Genetic association analysis was performed with the SNPassoc package and Haploview software. siRNA and short hairpin RNA (shRNA) specifically targeting ZNRD1 were used to transiently or stably down-regulate ZNRD1 expression in both lymphoid and nonlymphoid cells. Cells were infected with X4 and R5 HIV strains, and efficiency of infection was assessed by reporter gene assay or p24 assay. RESULTS: Genetic association analysis found a strong statistically significant correlation with the LTNP phenotype (single-nucleotide polymorphism rs1048412; [Formula: see text]), independently of HLA-A10 influence. siRNA-based functional analysis showed that ZNRD1 down-regulation by siRNA or shRNA impaired HIV-1 replication at the transcription level in both lymphoid and nonlymphoid cells. CONCLUSION: Genetic association analysis unequivocally identified ZNRD1 as an independent marker of LTNP to AIDS. Moreover, in vitro experiments pointed to viral transcription as the inhibited step. Thus, our data strongly suggest that ZNRD1 is a host cellular factor that influences HIV-1 replication and disease progression in HIV-positive individuals.
Resumo:
1. Sex differences in levels of parasite infection are a common rule in a wide range of mammals, with males usually more susceptible than females. Sex-specific exposure to parasites, e.g. mediated through distinct modes of social aggregation between and within genders, as well as negative relationships between androgen levels and immune defences are thought to play a major role in this pattern. 2. Reproductive female bats live in close association within clusters at maternity roosts, whereas nonbreeding females and males generally occupy solitary roosts. Bats represent therefore an ideal model to study the consequences of sex-specific social and spatial aggregation on parasites' infection strategies. 3. We first compared prevalence and parasite intensities in a host-parasite system comprising closely related species of ectoparasitic mites (Spinturnix spp.) and their hosts, five European bat species. We then compared the level of parasitism between juvenile males and females in mixed colonies of greater and lesser mouse-eared bats Myotis myotis and M. blythii. Prevalence was higher in adult females than in adult males stemming from colonial aggregations in all five studied species. Parasite intensity was significantly higher in females in three of the five species studied. No difference in prevalence and mite numbers was found between male and female juveniles in colonial roosts. 4. To assess whether observed sex-biased parasitism results from differences in host exposure only, or, alternatively, from an active, selected choice made by the parasite, we performed lab experiments on short-term preferences and long-term survival of parasites on male and female Myotis daubentoni. When confronted with adult males and females, parasites preferentially selected female hosts, whereas no choice differences were observed between adult females and subadult males. Finally, we found significantly higher parasite survival on adult females compared with adult males. 5. Our study shows that social and spatial aggregation favours sex-biased parasitism that could be a mere consequence of an active and adaptive parasite choice for the more profitable host.
Resumo:
The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.
Resumo:
UV−excimer laser photoablation was used, in combination with surface blocking techniques, to pattern proteins on the surfaces of polyimide and poly(ethylene terephthalate). This technique involves physical adsorption of avidin through laser-defined openings in low-temperature laminates or adsorbed protein blocking layers. Visualization of biomolecular patterns were monitored using avidin and fluorescein-labeled biotin as a model receptor−ligand couple. Adsorbed proteins could be shown to bind to UV-laser-treated polymer surfaces up to three times higher than on commercially available polymers. UV-laser photoablation was also used for the generation of three-dimensional structure, which leads to the possibility of biomolecule patterning within polymer-based microanalytical systems. The simplicity and easy handling of the described technique facilitate its application in microdiagnostic devices.
Resumo:
Whether or not species participating in specialized and obligate interactions display similar and simultaneous demographic variations at the intraspecific level remains an open question in phylogeography. In the present study, we used the mutualistic nursery pollination occurring between the European globeflower Trollius europaeus and its specialized pollinators in the genus Chiastocheta as a case study. Explicitly, we investigated if the phylogeographies of the pollinating flies are significantly different from the expectation under a scenario of plant-insect congruence. Based on a large-scale sampling, we first used mitochondrial data to infer the phylogeographical histories of each fly species. Then, we defined phylogeographical scenarios of congruence with the plant history, and used maximum likelihood and Bayesian approaches to test for plant-insect phylogeographical congruence for the three Chiastocheta species. We show that the phylogeographical histories of the three fly species differ. Only Chiastocheta lophota and Chiastocheta dentifera display strong spatial genetic structures, which do not appear to be statistically different from those expected under scenarios of phylogeographical congruence with the plant. The results of the present study indicate that the fly species responded in independent and different ways to shared evolutionary forces, displaying varying levels of congruence with the plant genetic structure
Resumo:
Although Drosophila systemic immunity is extensively studied, little is known about the fly's intestine-specific responses to bacterial infection. Global gene expression analysis of Drosophila intestinal tissue to oral infection with the Gram-negative bacterium Erwinia carotovora revealed that immune responses in the gut are regulated by the Imd and JAK-STAT pathways, but not the Toll pathway. Ingestion of bacteria had a dramatic impact on the physiology of the gut that included modulation of stress response and increased stem cell proliferation and epithelial renewal. Our data suggest that gut homeostasis is maintained through a balance between cell damage due to the collateral effects of bacteria killing and epithelial repair by stem cell division. The Drosophila gut provides a powerful model to study the integration of stress and immunity with pathways associated with stem cell control, and this study should prove to be a useful resource for such further studies.
Resumo:
Scaffold materials should favor cell attachment and proliferation, and provide designable 3D structures with appropriate mechanical strength. Collagen matrices have proven to be beneficial scaffolds for tissue regeneration. However, apart from small intestinal submucosa, they offer a limited mechanical strength even if crosslinking can enhance their mechanical properties. A more cell-friendly way to increase material strength is to combine synthetic polymer meshes with plastic compressed collagen gels. This work describes the potential of plastic compressed collagen-poly(lactic acid-co-ɛ-caprolactone) (PLAC) hybrids as scaffolds for bladder tissue regeneration. Human bladder smooth muscle and urothelial cells were cultured on and inside collagen-PLAC hybrids in vitro. Scaffolds were analyzed by electron microscopy, histology, immunohistochemistry, and AlamarBlue assay. Both cell types proliferated in and on the hybrid, forming dense cell layers on top after two weeks. Furthermore, hybrids were implanted subcutaneously in the backs of nude mice. Host cell infiltration, scaffold degradation, and the presence of the seeded bladder cells were analyzed. Hybrids showed a lower inflammatory reaction in vivo than PLAC meshes alone, and first signs of polymer degradation were visible at six months. Collagen-PLAC hybrids have potential for bladder tissue regeneration, as they show efficient cell seeding, proliferation, and good mechanical properties.
Resumo:
Recent experiments with mouse mammary tumor virus indicate that expression of a virally encoded superantigen by B cells and its subsequent recognition by T cells are essential steps for amplification of infection and virus transmission. Preliminary results suggest that superantigens may also be expressed during retroviral infection in humans.
Resumo:
The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic "metastatic factors" or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection in Leishmania parasites, which is often at the expense of its human host.
Resumo:
The integration of the Human Immunodeficiency Virus (HIV) genetic information into the host genome is fundamental for its replication and long-term persistence in the host. Isolating and characterizing the integration sites can be useful for obtaining data such as identifying the specific genomic location of integration or understanding the forces dictating HIV integration site selection. The methods outlined in this article describe a highly efficient and precise technique for identifying HIV integration sites in the host genome on a small scale using molecular cloning techniques and standard sequencing or on a massive scale using 454 pyrosequencing.
Resumo:
Two types of hydrogel microspheres have been developed. Fast ionotropic gelation of sodium alginate (Na-alg) in the presence of calcium ions was combined with slow covalent cross-linking of poly(ethylene glycol) (PEG) derivatives. For the first type, the fast obtainable Ca-alg hydrogel served as spherical matrix for the simultaneously occurring covalent cross-linking of multi-arm PEG derivative. A two-component interpenetrating network was formed in one step upon extruding the mixture of the two polymers into the gelation bath. For the second type, heterobifunctional PEG was grafted onto Na-alg prior to gelation. Upon extrusion of the polymer solution into the gelation bath, fast Ca-alg formation ensured the spherical shape and was accompanied by cross-linker-free covalent cross-linking of the PEG side chains. Thus, one-component hydrogel microspheres resulted. We present the physical properties of the hydrogel microspheres and demonstrate the feasibility of cell microencapsulation for both types of polymer networks.
Resumo:
Numerous host qualities can modulate parasite fitness, and among these, host nutritive resources and immunity are of prime importance. Indeed, parasite fitness increases with the amount of nutritive resources extracted from the host body and decreases with host immune response. To maximize fitness, parasites have therefore to balance these two host components. Yet, because host nutritive resources and immunity both increase with host body condition, it is unclear whether parasites perform better on hosts in prime, intermediate, or poor condition. We investigated blood meal size and survival of the ectoparasitic louse fly Crataerina melbae in relation to body condition and cutaneous immune response of their Alpine swift (Apus melba) nestling hosts. Louse flies took a smaller blood meal and lived a shorter period of time when feeding on nestlings that were experimentally food deprived or had their cutaneous immune response boosted with methionine. Consistent with these results, louse fly survival was the highest when feeding on nonexperimental nestlings in intermediate body condition. Our findings emphasize that although hosts in poor condition had a reduced immunocompetence, parasites may have avoided them because individuals in poor condition did not provide adequate resources. These findings highlight the fact that giving host immunocompetence primary consideration can result in a biased appraisal of host-parasite interactions.
Resumo:
Growth arrest-specific gene 6 (Gas6) is expressed in antigen-presenting cells and endothelial cells (ECs) but not in T cells. When wild-type (WT) or Gas6(-/-) mice received allogeneic non-T cell-depleted bone marrow cells, hepatic graft-versus-host disease (GVHD) was alleviated in Gas6(-/-) recipients regardless of donor genotype, but not in WT recipients. T-cell infiltration was more prominent and diffuse in WT than in Gas6(-/-) recipients' liver. When mice received 0.5 x 10(6) allogeneic T cells with T cell-depleted allogeneic bone marrow, clinical signs indicated that GVHD was less severe in Gas6(-/-) than in WT recipients, as shown by a significant improvement of the survival and reduced liver GVHD. These data demonstrate that donor cells were not involved in the protection mechanism. In addition, lack of Gas6 in antigen-presenting cells did not affect WT or Gas6(-/-) T-cell proliferation. We therefore assessed the response of WT or Gas6(-/-) ECs to tumor necrosis factor-alpha. Lymphocyte transmigration was less extensive through Gas6(-/-) than WT ECs and was not accompanied by increases in adhesion molecule levels. Thus, the lack of Gas6 in ECs impaired donor T-cell transmigration into the liver, providing a rationale for considering Gas6 pathway as a potential nonimmunosuppressive target to minimize GVHD in patients receiving allogeneic hematopoietic stem cell transplantation.