94 resultados para NITROGEN UPTAKE
Resumo:
BACKGROUND: Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators.METHODS: In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with (31)phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems.RESULTS: We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by (31)phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity.CONCLUSIONS: Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases.
Resumo:
This study was designed to test the hypothesis that subjects having faster oxygen uptake (VO(2)) kinetics during off-transients to exercises of severe intensity would obtain the smallest decrement score during a repeated sprint test. Twelve male soccer players completed a graded test, two severe-intensity exercises, followed by 6 min of passive recovery, and a repeated sprint test, consisting of seven 30-m sprints alternating with 20 s of active recovery. The relative decrease in score during the repeated sprint test was positively correlated with time constants of the primary phase for the VO(2) off-kinetics (r = 0.85; p < 0.001) and negatively correlated with the VO(2) peak (r = -0.83; p < 0.001). These results strengthen the link found between VO(2) kinetics and the ability to maintain sprint performance during repeated sprints.
Resumo:
We previously reported that pancreatic islet beta-cells from GLUT2-null mice lost the first phase but preserved the second phase of glucose-stimulated insulin secretion (GSIS). Furthermore, we showed that the remaining secretory activity required glucose uptake and metabolism because it can be blocked by inhibition of oxidative phosphorylation. Here, we extend these previous studies by analyzing, in GLUT2-null islets, glucose transporter isoforms and glucokinase expression and by measuring glucose usage, GSIS, and glucose-stimulated insulin mRNA biosynthesis. We show that in the absence of GLUT2, no compensatory expression of either GLUT1 or GLUT3 is observed and that glucokinase is expressed at normal levels. Glucose usage by isolated islets was increased between 1 and 6 mmol/l glucose but was not further increased between 6 and 20 mmol/l glucose. Parallel GSIS measurements showed that insulin secretion was not stimulated between 2.8 and 6 mmol/l glucose but was increased by >4-fold between 6 and 20 mmol/l glucose. Stimulation by glucose of total protein and insulin biosynthesis was also markedly impaired in the absence of GLUT2. Finally, we re-expressed GLUT2 in GLUT2-null beta-cells using recombinant lentiviruses and demonstrated a restoration of normal GSIS. Together, these data show that in the absence of GLUT2, glucose can still be taken up by beta-cells, albeit at a low rate, and that this transport activity is unlikely to be attributed to GLUT1 or GLUT3. This uptake activity, however, is limiting for normal glucose utilization and signaling to secretion and translation. These data further demonstrate the key role of GLUT2 in murine beta-cells for glucose signaling to insulin secretion and biosynthesis.
Resumo:
The purpose of this study was to investigate the effect of glucose administered with amino acids before and during exercise on hepatic ureagenesis. Eight mongrel dogs subjected to treadmill running for 150 minutes at 10 km/h on a 12% incline were intravenously infused with either a mixture of amino acids and glucose (AAG) or amino acids alone (AA). The infusion was started 60 minutes before exercise and continued until the end of exercise. The rate of urinary urea excretion increased after infusion of both AAG and AA. However, the rate of urinary urea excretion was significantly lower in the AAG group versus the AA group during the first 1.5 hours of the recovery period ([R0 to R90] 514+/-24 v 637+/-24 mg/h, mean+/-SE, P < .05). Moreover, hepatic urea output was decreased during AAG versus AA infusion (229+/-62 v 367+/-55 microg/kg/min, P < .05). Hepatic glucose production during exercise was also significantly lower in AAG versus AA infusion (354+/-54 v 589+/-56 mg/kg, P < .05). On the other hand, no difference was observed in hepatic total amino acid uptake between the groups. Thus, these results indicate that AAG administered before and during exercise appears to reduce hepatic ureagenesis due to reduced hepatic gluconeogenesis as compared with administration of AA alone. These findings also suggest that nitrogen retention is enhanced by glucose administered during exercise.
Resumo:
A critical issue in brain energy metabolism is whether lactate produced within the brain by astrocytes is taken up and metabolized by neurons upon activation. Although there is ample evidence that neurons can efficiently use lactate as an energy substrate, at least in vitro, few experimental data exist to indicate that it is indeed the case in vivo. To address this question, we used a modeling approach to determine which mechanisms are necessary to explain typical brain lactate kinetics observed upon activation. On the basis of a previously validated model that takes into account the compartmentalization of energy metabolism, we developed a mathematical model of brain lactate kinetics, which was applied to published data describing the changes in extracellular lactate levels upon activation. Results show that the initial dip in the extracellular lactate concentration observed at the onset of stimulation can only be satisfactorily explained by a rapid uptake within an intraparenchymal cellular compartment. In contrast, neither blood flow increase, nor extracellular pH variation can be major causes of the lactate initial dip, whereas tissue lactate diffusion only tends to reduce its amplitude. The kinetic properties of monocarboxylate transporter isoforms strongly suggest that neurons represent the most likely compartment for activation-induced lactate uptake and that neuronal lactate utilization occurring early after activation onset is responsible for the initial dip in brain lactate levels observed in both animals and humans.
Resumo:
The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc) whereby the Crc protein establishes translational repression of target mRNAs at CA (catabolite activity) motifs present in target mRNAs near ribosome binding sites. Poor carbon sources lead to activation of the CbrAB two-component system, which induces transcription of the small RNA (sRNA) CrcZ. This sRNA relieves Crc-mediated repression of target mRNAs. In this study, we have identified novel targets of the CbrAB/Crc system in P. aeruginosa using transcriptome analysis in combination with a search for CA motifs. We characterized four target genes involved in the uptake and utilization of less preferred carbon sources: estA (secreted esterase), acsA (acetyl-CoA synthetase), bkdR (regulator of branched-chain amino acid catabolism) and aroP2 (aromatic amino acid uptake protein). Evidence for regulation by CbrAB, CrcZ and Crc was obtained in vivo using appropriate reporter fusions, in which mutation of the CA motif resulted in loss of catabolite repression. CbrB and CrcZ were important for growth of P. aeruginosa in cystic fibrosis (CF) sputum medium, suggesting that the CbrAB/Crc system may act as an important regulator during chronic infection of the CF lung.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Phosphate (Pi) acquisition of crops via arbuscular mycorrhizal (AM) symbiosis acquires increasing importance due to the limited rock Pi reserves and the demand for environmentally sustainable agriculture. However, the symbiotic Pi uptake machinery has not been characterized in any monocotyledonous plant species. Among these, rice is the primary staple food for more than half of the human population and thus central for future food security. However, the relevance of the AM symbiosis for rice Pi nutrition is presently unclear. Here, we show that 70% of the overall Pi acquired by rice is delivered via the symbiotic route. To better understand this pathway we combined genetic, molecular and physiological approaches to determine the specific functions of the two rice Pi transporters, PT11 and PT13, which are expressed only during AM symbiosis. The PT11 lineage of proteins is present in mono- and dicotyledons whereas PT13, while found across the Poaceae, is absent from dicotyledons. Surprisingly, mutations in either PT11 or PT13 affected fungal colonization and arbuscule formation demonstrating that both genes are essential for AM symbiosis between rice and Glomus intra.rad.ices. Importantly, for symbiotic Pi uptake, only PT11 is necessary and sufficient. We found that mycorrhizal rice, remarkably, received almost all Pi via the symbiotic route. Such dominating mycorrhizal Pi uptake was found in plants grown under controlled conditions as well as in field soils, suggesting that the AM symbiosis is relevant for the Pi nutrition of field grown rice. Development of smaller arbuscules in PT11 mutants suggested that symbiotic Pi signaling is required for fungal nourishment by the plant. However, co-culture of mutant with wild type nurse plants did not restore normal arbuscule size in mutant roots, indicating that other factors than malnutrition accounted for the altered arbuscule phenotype. Surprisingly, the loss of PT13 did not affect symbiotic Pi uptake although it impacted arbuscule morphology, suggesting that PT13 is involved in signaling during arbuscule development. However, induction of PT13 was not only monitored in arbusculated cells but also in inner cortex cells of non-inoculated roots of plants grown under high Pi fertilization conditions. According to preliminary observations, PT13 localized at the tonoplast in arbusculated and non-arbusculated cells, suggesting that it might be involved in transporting Pi into the vacuole, possibly for maintaining cellular Pi homeostasis. The further investigation showed that fungal colonization level was significantly affected in the crown roots of two ptlS mutant alleles, but not in large lateral roots, implying the possible role of PT13 for maintaining Pi homeostasis in the crown roots. - L'acquisition de phosphate (Pi) par les plantes cultivées s'effectue grâce à une symbiose mycorhizienne arbasculaire (AM). L'étude de cette symbiose devient fondamentale puisque d'une part, les réserves en phosphate minéral sont limitées, et, d'autre part, la demande pour une agriculture écologiquement soutenable se renforce. La machinerie d'absorption symbiotique du phosphate n'est cependant pas encore élucidée chez les plantes monocotylédones. Parmi celles-ci, le riz occupe une place primordiale. Aliment de base pour plus de la moitié de la population mondiale, il revêt de ce fait une dimension essentielle en termes de sécurité alimentaire. Pourtant, l'importance de la symbiose AM chez le riz dans le processus d'acquisition du phosphate n'est, encore de nos jours, que peu comprise. Dans cette étude, nous montrons que 70% du phosphate acquis par le riz est mis à disposition de la plante grâce à la symbiose AM. Afin de mieux comprendre ce mécanisme, nous avons employé des approches physiologiques et génétiques nous permettant de déterminer les fonctions spécifiques de deux transporteurs de Pi, PT11 et PT13, présents chez le riz et exprimés uniquement durant la symbiose AM. La famille de gènes à laquelle appartient PT11 est présente chez les monocotylédones ainsi que chez les dicotylédones tandis que PT13, bien que retrouvé au sein des Poaceae, est absent chez les dicotylédones. Etonnamment, des versions mutées de PT11 ou de PT13 affectent la colonisation par le champignon endo-mycorhizien ainsi que la formation d'arbuscules, démontrant l'importance de ces deux gènes dans la symbiose AM entre le riz et Glomus intraradices. Il est à noter que seul PT11 se révèle nécessaire et suffisant pour l'apport de Pi grâce à la symbiose. Nous avons observé que la presque totalité du phosphate dont dispose le riz lors d'une symbiose AM provient du champignon. De telles proportions ont été observées tant chez des plantes cultivées en conditions contrôlées que chez des plantes cultivées dans les champs. Cela suggère l'importance de la symbiose AM dans le processus d'acquisition du Pi chez le riz cultivé à l'extérieur. Le développement d'arbuscules plus petits chez le mutant PT11 tend à montrer qu'une voie signalétique impliquant le Pi symbiotique est nécessaire pour l'entretien du champignon par la plante. Toutefois, une co-culture du mutant avec des plantes sauvages ne permet pas de restaurer des arbuscules de taille normale dans les racines du mutant. Ce résultat indique le rôle de facteurs autres que la malnutrition aboutissant à la formation d'arbuscules altérés. Si la perte de PT13 n'affecte pas l'acquisition de phosphate symbiotique, la morphologie de l'arbuscule est, quant à elle, modifiée. Ceci suggère un rôle de PT13 durant le développement de l'arbuscule. Or, l'induction de PT13 est non seulement détectée dans des cellules contenant des arbuscules mais également dans des cellules du cortex, ceci chez des plantes cultivées sans champignon mais dans des conditions de fortes concentrations en engrais phosphaté. En accord avec des observations précédentes, PT13 est localisé au niveau du tonoplaste des cellules contenant ou non des arbuscules. Ceci suggère que PT13 pourrait être impliqué dans le transport du Pi vers la vacuole, éventuellement pour maintenir une certaine homéostasie du phosphate. Dans cette étude, nous démontrons également que le niveau de colonisation par le champignon est affecté de manière significative dans les racines principales des deux allèles du mutants ptl3, mais pas dans les grosses racines latérales. Cela impliquerait un rôle possible de PT13 dans le maintien de l'homéostasie du phosphate dans les racines principales. RESUME POUR UN LARGE PUBLIC Le phosphate (Pi), l'un des éléments minéraux essentiel au développement des plantes, se trouve généralement en faible quantité dans le sol, limitant ainsi la croissance des plantes. Le rendement de la production agricole dépend dès lors de l'addition d'engrais contenant du phosphate inorganique (Pi), obtenu à partir de ressources minières riches en phosphate. Or, ces ressources devraient être épuisées d'ici la fin du siècle. Les racines des plantes possèdent des transporteurs de phosphate efficaces leur permettant d'acquérir rapidement le Pi présent dans le sol. Comme le Pi s'avère immobile dans le sol, l'absorption rapide par les racines crée des zones pauvres en Pi autour des systèmes racinaires. Pour surmonter cet obstacle, les plantes ont développé une symbiose avec des champignons endomycorhiziens, la symbiose mycorhizienne arbusculaire (AM). Cette association leur donne accès à d'autres ressources en phosphate puisque le mycélium de ces champignons se développe sur une surface 100 fois supérieure à celle des racines. Cela augmente considérablement la surface de nutrition, dépassant ainsi la zone appauvrie en Pi. Le phosphate, transporté grâce au champignon jusqu'à l'intérieur des racines, est fourni à la plante par le biais de structures établies à l'intérieur des cellules végétales, appelées arbuscules. De leur côté, les plantes possèdent des transporteurs spécifiques afin de recevoir le Pi fourni par les champignons. A l'heure actuelle, la machinerie nécessaire à cette absorption a été uniquement décrite chez des plantes dicotylédones. Or, comprendre l'apport de phosphate par les champignons mycorhiziens s'avère particulièrement pertinent dans le cas des espèces monocotylédones cultivées telles que les céréales. Ces dernières constituent en effet la majeure partie de l'alimentation humaine. Parmi les céréales, le riz demeure l'aliment de base de la population mondiale, d'où son importance en terme de sécurité alimentaire. Durant mon travail de thèse, j'ai identifié et caractérisé le transporteur du riz impliqué dans l'apport de phosphate par ce type de symbiose AM. J'ai également démontré que le riz, lorsqu'il vit en symbiose, bénéficie de la presque totalité du Pi transporté par le champignon. Environ 40% de la production globale de riz est cultivée dans des conditions permettant la symbiose avec des mycorhizes arbusculaires. Les variétés de riz adaptées à ces conditions aérobiques deviennent des alternatives favorables aux cultivars actuels nécessitant une forte irrigation. Elles se révèlent en effet plus tolérantes aux pénuries d'eau et permettent l'utilisation de pratiques agricoles moins intensives. Les données présentées dans cette étude enrichissent nos connaissances concernant l'absorption du phosphate chez le riz grâce à la symbiose AM. Ces connaissances peuvent s'avérer décisives pour le développement de cultivars du riz plus adaptés à une agriculture écologiquement soutenable.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Fossil bones and teeth of Late Pleistocene terrestrial mammals from Rhine River gravels (RS) and the North Sea (NS), that have been exposed to chemically and isotopically distinct diagenetic fluids (fresh water versus seawater), were investigated to study the effects of early diagenesis on biogenic apatite. Changes in phosphate oxygen isotopic composition (delta O-18(PO4)), nitrogen content (wt.% N) and rare earth element (REE) concentrations were measured along profiles within bones that have not been completely fossilized, and in skeletal tissues (bone, dentine, enamel) with different susceptibilities to diagenetic alteration. Early diagenetic changes of elemental and isotopic compositions of apatite in fossil bone are related to the loss of the stabilizing collagen matrix. The REE concentration is negatively correlated with the nitrogen content, and therefore the amount of collagen provides a sensitive proxy for early diagenetic alteration. REE patterns of RS and NS bones indicate initial fossilization in a fresh water fluid with similar REE compositions. Bones from both settings have nearly collagen-free, REE-, U-, F- and Sr-enriched altered outer rims, while the collagen-bearing bone compacta in the central part often display early diagenetic pyrite void-fillings. However, NS bones exposed to Holocene seawater have outer rim delta O-18(PO4) values that are 1.1 to 2.6 parts per thousand higher compared to the central part of the same bones (delta O-18(PO4) = 18.2 +/- 0.9 parts per thousand, n = 19). Surprisingly, even the collagen-rich bone compacta with low REE contents and apatite crystallinity seems altered, as NS tooth enamel (delta O-18(PO4) =15.0 +/- 0.3 parts per thousand, n=4) has about 3%. lower delta O-18(PO4) values, values that are also similar to those of enamel from RS teeth. Therefore, REE concentration, N content and apatite crystallinity are in this case only poor proxies for the alteration of delta O-18(PO4) values. Seawater exposure of a few years up to 8 kyr can change the delta O-18(PO4) values of the bone apatite by > 3 parts per thousand. Therefore, bones fossilized in marine settings must be treated with caution for palaeoclimatic reconstructions. However, enamel seems to preserve pristine delta O-18(PO4) values on this time scale. Using species-specific calibrations for modern mammals, a mean delta O-18(H2O) value can be reconstructed for Late Pleistocene mammalian drinking water of around -9.2 +/- 0.5 parts per thousand, which is similar to that of Late Pleistocene groundwater from central Europe. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Glial cells are increasingly recognized as active players that profoundly influence neuronal synaptic transmission by specialized signaling pathways. In particular, astrocytes have been shown recently to release small molecules, such as the amino acids l-glutamate and d-serine as "gliotransmitters," which directly control the efficacy of adjacent synapses. However, it is still controversial whether gliotransmitters are released from a cytosolic pool or by Ca(2+)-dependent exocytosis from secretory vesicles, i.e., by a mechanism similar to the release of synaptic vesicles in synapses. Here we report that rat cortical astrocytes contain storage vesicles that display morphological and biochemical features similar to neuronal synaptic vesicles. These vesicles share some, but not all, membrane proteins with synaptic vesicles, including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) synaptobrevin 2, and contain both l-glutamate and d-serine. Furthermore, they show uptake of l-glutamate and d-serine that is driven by a proton electrochemical gradient. d-Serine uptake is associated with vesicle acidification and is dependent on chloride. Whereas l-serine is not transported, serine racemase, the synthesizing enzyme for d-serine, is anchored to the membrane of the vesicles, allowing local generation of d-serine. Finally, we reveal a previously unexpected mutual vesicular synergy between d-serine and l-glutamate filling in glia vesicles. We conclude that astrocytes contain vesicles capable of storing and releasing d-serine, l-glutamate, and most likely other neuromodulators in an activity-dependent manner.