172 resultados para Michelson interference


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The human herpes simplex virus-associated host cell factor 1 (HCF-1) is a conserved human transcriptional co-regulator that links positive and negative histone modifying activities with sequence-specific DNA-binding transcription factors. It is synthesized as a 2035 amino acid precursor that is cleaved to generate an amino- (HCF-1(N)) terminal subunit, which promotes G1-to-S phase progression, and a carboxy- (HCF-1(C)) terminal subunit, which controls multiple aspects of cell division during M phase. The HCF-1(N) subunit contains a Kelch domain that tethers HCF-1 to sequence-specific DNA-binding transcription factors, and a poorly characterized so called "Basic" region (owing to a high ratio of basic vs. acidic amino acids) that is required for cell proliferation and has been shown to associate with the Sin3 histone deacetylase (HDAC) component. Here we studied the role of the Basic region in cell proliferation and G1-to-S phase transition assays. METHODOLOGY/PRINCIPAL FINDINGS: Surprisingly, much like the transcriptional activation domains of sequence-specific DNA-binding transcription factors, there is no unique sequence within the Basic region required for promoting cell proliferation or G1-to-S phase transition. Indeed, the ability to promote these activities is size dependent such that the shorter the Basic region segment the less activity observed. We find, however, that the Basic region requirements for promoting cell proliferation in a temperature-sensitive tsBN67 cell assay are more stringent than for G1-to-S phase progression in an HCF-1 siRNA-depletion HeLa-cell assay. Thus, either half of the Basic region alone can support G1-to-S phase progression but not cell proliferation effectively in these assays. Nevertheless, the Basic region displays considerable structural plasticity because each half is able to promote cell proliferation when duplicated in tandem. Consistent with a potential role in promoting cell-cycle progression, the Sin3a HDAC component can associate independently with either half of the Basic region fused to the HCF-1 Kelch domain. CONCLUSIONS/SIGNIFICANCE: While conserved, the HCF-1 Basic region displays striking structural flexibility for controlling cell proliferation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamically polarized membrane proteins define different cell boundaries and have an important role in intercellular communication-a vital feature of multicellular development. Efflux carriers for the signalling molecule auxin from the PIN family are landmarks of cell polarity in plants and have a crucial involvement in auxin distribution-dependent development including embryo patterning, organogenesis and tropisms. Polar PIN localization determines the direction of intercellular auxin flow, yet the mechanisms generating PIN polarity remain unclear. Here we identify an endocytosis-dependent mechanism of PIN polarity generation and analyse its developmental implications. Real-time PIN tracking showed that after synthesis, PINs are initially delivered to the plasma membrane in a non-polar manner and their polarity is established by subsequent endocytic recycling. Interference with PIN endocytosis either by auxin or by manipulation of the Arabidopsis Rab5 GTPase pathway prevents PIN polarization. Failure of PIN polarization transiently alters asymmetric auxin distribution during embryogenesis and increases the local auxin response in apical embryo regions. This results in ectopic expression of auxin pathway-associated root-forming master regulators in embryonic leaves and promotes homeotic transformation of leaves to roots. Our results indicate a two-step mechanism for the generation of PIN polar localization and the essential role of endocytosis in this process. It also highlights the link between endocytosis-dependent polarity of individual cells and auxin distribution-dependent cell fate establishment for multicellular patterning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we present a method to achieve tri-dimensional contouring of macroscopic objects. A modified reference wave speckle interferometer is used in conjunction with a source of reduced coherence. The depth signal is given by the envelope of the interference signal, directly determined by the coherence length of the source. Fringes are detected in the interferogram obtained by a single shot and are detected by means of adequate filtering. With the approach based on off-axis configuration, a contour line can be extracted from a single acquisition, thus allowing to use the system in harsh environment. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Western Alpine Are has been created during the Cretaceous and the Tertiary orogenies. The interference patterns of the Tertiary structures suggest their formation during continental collision of the European and the Adriatic Plates, with an accompanying anticlockwise rotation of the Adriatic indenter. Extensional structures are mainly related to ductile deformation by simple shear. These structures developed at a deep tectonic level, in granitic crustal rocks, at depths in excess of 10 km. In the early Palaeogene period of the Tertiary Orogeny, the main Tertiary nappe emplacement resulted from a NW-thrusting of the Austroalpine, Penninic and Helvetic nappes. Heating of the deep zone of the Upper Cretaceous and Tertiary nappe stack by geothermal heat flow is responsible for the Tertiary regional metamorphism, reaching amphibolite-facies conditions in the Lepontine Gneiss Dome (geothermal gradient 25 degrees C/ km). The Tertiary thrusting occurred mainly during prograde metamorphic conditions with creation of a penetrative NW-SE-oriented stretching lineation, X(1) (finite extension), parallel to the direction of simple shear. Earliest cooling after the culmination of the Tertiary metamorphism, some 38 Ma ago, is recorded by the cooling curves of the Monte Rosa and Mischabel nappes to the west and the Suretta Nappe to the east of the Lepontine Gneiss Dome. The onset of dextral transpression, with a strong extension parallel to the mountain belt, and the oldest S-vergent `'backfolding'' took place some 35 to 30 Ma ago during retrograde amphibolite-facies conditions and before the intrusion of the Oligocene dikes north of the Periadriatic Line. The main updoming of the Lepontine Gneiss Dome started some 32-30 Ma ago with the intrusion of the Bergell tonalites and granodiorites, concomitant with S-vergent backfolding and backthrusting and dextral strike-slip movements along the Tonale and Canavese Lines (Argand's Insubric phase). Subsequently, the center of main updoming migrated slowly to the west, reaching the Simplon region some 20 Ma ago. This was contemporaneous with the westward migration of the Adriatic indenter. Between 20 Ma and the present, the Western Aar Massif-Toce culmination was the center of strong uplift. The youngest S-vergent backfolds, the Glishorn anticline and the Berisal syncline fold the 12 Ma Rb/Sr biotite isochron and are cut by the 11 Ma old Rhone-Simplon Line. The discrete Rhone-Simplon Line represents a late retrograde manifestation in the preexisting ductile Simplon Shear Zone. This fault zone is still active today. The Oligocene-Neogene dextral transpression and extension in the Simplon area were concurrent with thrusting to the northwest of the Helvetic nappes, the Prealpes (35-15 Ma) and with the Jura thin-skinned thrust (11-3 Ma). It was also contemporaneous with thrusting to the south of the Bergamasc (> 35-5 Ma) and Milan thrusts (16-5 Ma).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable gene silencing by RNA interference (RNAi) can be achieved by expression of small hairpin RNAs (shRNAs) from RNA polymerase III promoters. We have tested lentiviral vectors expressing shRNAs targetting CCR5 in primary CD4 T cells from donors representing various CCR5 and CCR2 genetic backgrounds covering the full spectrum of CCR5 expression levels and permissiveness for HIV-1 infection. A linear decrease in CCR5 expression resulted in a logarithmic decrease in cellular infection, giving up to three logs protection from HIV-1 infection in vitro. Protection was maintained at very high multiplicity of infection. This and other recent reports on RNAi should open a debate about the use of RNAi gene therapy for HIV infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The Complete Arabidopsis Transcript MicroArray (CATMA) initiative combines the efforts of laboratories in eight European countries 1 to deliver gene-specific sequence tags (GSTs) for the Arabidopsis research community. The CATMA initiative offers the power and flexibility to regularly update the GST collection according to evolving knowledge about the gene repertoire. These GST amplicons can easily be reamplified and shared, subsets can be picked at will to print dedicated arrays, and the GSTs can be cloned and used for other functional studies. This ongoing initiative has already produced approximately 24,000 GSTs that have been made publicly available for spotted microarray printing and RNA interference. RESULTS: GSTs from the CATMA version 2 repertoire (CATMAv2, created in 2002) were mapped onto the gene models from two independent Arabidopsis nuclear genome annotation efforts, TIGR5 and PSB-EuGène, to consolidate a list of genes that were targeted by previously designed CATMA tags. A total of 9,027 gene models were not tagged by any amplified CATMAv2 GST, and 2,533 amplified GSTs were no longer predicted to tag an updated gene model. To validate the efficacy of GST mapping criteria and design rules, the predicted and experimentally observed hybridization characteristics associated to GST features were correlated in transcript profiling datasets obtained with the CATMAv2 microarray, confirming the reliability of this platform. To complete the CATMA repertoire, all 9,027 gene models for which no GST had yet been designed were processed with an adjusted version of the Specific Primer and Amplicon Design Software (SPADS). A total of 5,756 novel GSTs were designed and amplified by PCR from genomic DNA. Together with the pre-existing GST collection, this new addition constitutes the CATMAv3 repertoire. It comprises 30,343 unique amplified sequences that tag 24,202 and 23,009 protein-encoding nuclear gene models in the TAIR6 and EuGène genome annotations, respectively. To cover the remaining untagged genes, we identified 543 additional GSTs using less stringent design criteria and designed 990 sequence tags matching multiple members of gene families (Gene Family Tags or GFTs) to cover any remaining untagged genes. These latter 1,533 features constitute the CATMAv4 addition. CONCLUSION: To update the CATMA GST repertoire, we designed 7,289 additional sequence tags, bringing the total number of tagged TAIR6-annotated Arabidopsis nuclear protein-coding genes to 26,173. This resource is used both for the production of spotted microarrays and the large-scale cloning of hairpin RNA silencing vectors. All information about the resulting updated CATMA repertoire is available through the CATMA database http://www.catma.org.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inflammatory prostaglandin E2 (PGE2) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE2 directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE2-induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE2 increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE2 EP4 receptor was responsible for transducing the signal to mTORC1. Moreover, PGE2 increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE2-induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE2 increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE2 mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Pro-atherogenic and pro-oxidant, oxidised LDL trigger adverse effects on pancreatic beta cells, possibly contributing to diabetes progression. Because oxidised LDL diminish the expression of genes regulated by the inducible cAMP early repressor (ICER), we investigated the involvement of this transcription factor and of oxidative stress in beta cell failure elicited by oxidised LDL. METHODS: Isolated human and rat islets, and insulin-secreting cells were cultured with human native or oxidised LDL or with hydrogen peroxide. The expression of genes was determined by quantitative real-time PCR and western blotting. Insulin secretion was monitored by EIA kit. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Exposure of beta cell lines and islets to oxidised LDL, but not to native LDL raised the abundance of ICER. Induction of this repressor by the modified LDL compromised the expression of important beta cell genes, including insulin and anti-apoptotic islet brain 1, as well as of genes coding for key components of the secretory machinery. This led to hampering of insulin production and secretion, and of cell survival. Silencing of this transcription factor by RNA interference restored the expression of its target genes and alleviated beta cell dysfunction and death triggered by oxidised LDL. Induction of ICER was stimulated by oxidative stress, whereas antioxidant treatment with N-acetylcysteine or HDL prevented the rise of ICER elicited by oxidised LDL and restored beta cell functions. CONCLUSIONS/INTERPRETATION: Induction of ICER links oxidative stress to beta cell failure caused by oxidised LDL and can be effectively abrogated by antioxidant treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors. IMPORTANCE: We have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. These vectors are stable and express high levels of both HIV-1 antigens. Gag-induced VLPs do not interfere with NYVAC morphogenesis, are highly attenuated in immunocompromised and newborn mice after intracranial inoculation, trigger specific innate immune responses in human cells, and activate T (Env-specific CD4 and Gag-specific CD8) and B cell immune responses to the HIV antigens, leading to high antibody titers against gp140. For these reasons, these vectors can be considered vaccine candidates against HIV/AIDS and currently are being tested in macaques and humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viruses have evolved strategies to overcome the antiviral effects of the host at different levels. Besides specific defence mechanisms, the host responds to viral infection via the interferon pathway and also by RNA interference (RNAi). However, several viruses have been identified that suppress RNAi. We addressed the question of whether hepatitis C virus (HCV) suppresses RNAi, using cell lines constitutively expressing green fluorescent protein (GFP) and inducibly expressing HCV proteins. It was found that short interfering RNA-mediated GFP gene silencing was inhibited when the entire HCV polyprotein was expressed. Further studies showed that HCV structural proteins, and in particular envelope protein 2 (E2), were responsible for this inhibition. Co-precipitation assays demonstrated that E2 bound to Argonaute-2 (Ago-2), a member of the RNA-induced silencing complex, RISC. Thus, HCV E2 that interacts with Ago-2 is able to suppress RNAi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: A developmental dysregulation of glutathione (GSH) synthesis leading to oxidative stress, when combined with environmental risk factors (viral infections) generating reactive oxygen species, can play a critical role in inducing schizophrenia phenotypes. GSH deficit induces morphological, physiological and behavioral anomalies analogous to those reported in schizophrenic patients, including disrupted parvalbumine (PV) inhibitory interneuron's integrity and neuronal synchrony (β/γ-oscillations). Methods: We assessed PV immunoreactivity (PV-IR) and local synchronization in prefrontal cortex of two mouse models: (1) mice with a genetic deficit in GSH (GCLM-/-) and (2) mice with prenatal immune activation at embryonic day17 (PolyI:C). Results: Adults from both mice models display reduced PV-IR in prefrontal cortex. In anterior cingulate (ACC) of GCLM-/-, appearance and maturation of PVI are delayed and worsened with peribubertal stress but not in adult one. This effect is reversed by treatment with the GSH precursor N-acetyl-cysteine. The power of beta and gamma oscillations are decreased in ACC of GCLM-/- while they increased in prelimbic cortex of PolyI:C mice. Conclusions: Despite reduced PV-IR in both models, alteration of the synchronization was different, indicating that the structural/functional disruption of the cortical circuitry was partly different in both models. Novel therapeutic strategies are proposed, based on interference with oxidative stress and inflammatory processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arteriovenous-lymphatic endothelial cell fates are specified by the master regulators, namely, Notch, COUP-TFII, and Prox1. Whereas Notch is expressed in the arteries and COUP-TFII in the veins, the lymphatics express all 3 cell fate regulators. Previous studies show that lymphatic endothelial cell (LEC) fate is highly plastic and reversible, raising a new concept that all 3 endothelial cell fates may co-reside in LECs and a subtle alteration can result in a reprogramming of LEC fate. We provide a molecular basis verifying this concept by identifying a cross-control mechanism among these cell fate regulators. We found that Notch signal down-regulates Prox1 and COUP-TFII through Hey1 and Hey2 and that activated Notch receptor suppresses the lymphatic phenotypes and induces the arterial cell fate. On the contrary, Prox1 and COUP-TFII attenuate vascular endothelial growth factor signaling, known to induce Notch, by repressing vascular endothelial growth factor receptor-2 and neuropilin-1. We show that previously reported podoplanin-based LEC heterogeneity is associated with differential expression of Notch1 in human cutaneous lymphatics. We propose that the expression of the 3 cell fate regulators is controlled by an exquisite feedback mechanism working in LECs and that LEC fate is a consequence of the Prox1-directed lymphatic equilibrium among the cell fate regulators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simultaneous presence of several tramp ant species of relatively recent introduction on a remote island is an excellent opportunity to study competition mechanisms that lead to the establishment of invasive species. Using attractive food baits we collected 14 ant species among which 10 are well-known tramp species. The most important change between 1996-97 and 2003 is the spread of the tropical fire ant Solenopsis geminata at the detriment of Tetramorium simillimum, suggesting that the colonization process on Floreana is still very dynamic. The follow-up of 400 food baits for 21 hours permitted us to calculate indices of competition abilities for 11 species, revealing distinct strategies. The two small tramp species Monomorium floricola and Tapinoma melanocephalum are typically opportunists when large-sized Odontomachus bauri (possibly native species) and Camponotus macilentus (endemic species) are good interference competitors, out-competing other species at food baits. Dominant species S. geminata and Monomorium destructor reach high scores for all indices due to their high abundance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for the silencing of gene expression using RNA interference in the context of Huntington's disease (HD). Protocols provided here describe the design of small interfering RNAs, their encoding in lentiviral vectors (LVs) and viral production, as well as procedures for their stereotaxic injection in the rodent brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARβ/δ, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.