109 resultados para Embedded and embodied cognition
Resumo:
Learning and immunity are two adaptive traits with roles in central aspects of an organism's life: learning allows adjusting behaviours in changing environments, while immunity protects the body integrity against parasites and pathogens. While we know a lot about how these two traits interact in vertebrates, the interactions between learning and immunity remain poorly explored in insects. During my PhD, I studied three possible ways in which these two traits interact in the model system Drosophila melanogaster, a model organism in the study of learning and in the study of immunity. Learning can affect the behavioural defences against parasites and pathogens through the acquisition of new aversions for contaminated food for instance. This type of learning relies on the ability to associate a food-related cue with the visceral sickness following ingestion of contaminated food. Despite its potential implication in infection prevention, the existence of pathogen avoidance learning has been rarely explored in invertebrates. In a first part of my PhD, I tested whether D. melanogaster, which feed on food enriched in microorganisms, innately avoid the orally-acquired 'novel' virulent pathogen Pseudomonas entomophila, and whether it can learn to avoid it. Although flies did not innately avoid this pathogen, they decreased their preference for contaminated food over time, suggesting the existence of a form of learning based likely on infection-induced sickness. I further found that flies may be able to learn to avoid an odorant which was previously associated with the pathogen, but this requires confirmation with additional data. If this is confirmed, this would be the first time, to my knowledge, that pathogen avoidance learning is reported in an insect. The detrimental effect of infection on cognition and more specifically on learning ability is well documented in vertebrates and in social insects. While the underlying mechanisms are described in detail in vertebrates, experimental investigations are lacking in invertebrates. In a second part of my PhD, I tested the effect of an oral infection with natural pathogens on associative learning of D. melanogaster. By contrast with previous studies in insects, I found that flies orally infected with the virulent P. entomophila learned better the association of an odorant with mechanical shock than uninfected flies. The effect seems to be specific to a gut infection, and so far I have not been able to draw conclusions on the respective contributions of the pathogen's virulence and of the flies' immune activity in this effect. Interestingly, infected flies may display an increased sensitivity to physical pain. If the learning improvement observed in infected flies was due partially to the activity of the immune system, my results would suggest the existence of physiological connections between the immune system and the nervous system. The basis of these connections would then need to be addressed. Learning and immunity are linked at the physiological level in social insects. Physiological links between traits often result from the expression of genetic links between these traits. However, in social insects, there is no evidence that learning and immunity may be involved in an evolutionary trade-off. I previously reported a positive effect of infection on learning in D. melanogaster. This might suggest that a positive genetic link could exist between learning and immunity. We tested this hypothesis with two approaches: the diallel cross design with inbred lines, and the isofemale lines design. The two approaches provided consistent results: we found no additive genetic correlation between learning and resistance to infection with the diallel cross, and no genetic correlation in flies which are not yet adapted to laboratory conditions in isofemale lines. Consistently with the literature, the two studies suggested that the positive effect of infection on learning I observed might not be reflected by a positive evolutionary link between learning and immunity. Nevertheless, the existence of complex genetic relationships between the two traits cannot be excluded. - L'apprentissage et l'immunité sont deux caractères à valeur adaptative impliqués dans des aspects centraux de la vie d'un organisme : l'apprentissage permet d'ajuster les comportements pour faire face aux changements de l'environnement, tandis que l'immunité protège l'intégrité corporelle contre les attaques des parasites et des pathogènes. Alors que les interactions entre l'apprentissage et l'immunité sont bien documentées chez les vertébrés, ces interactions ont été très peu étudiées chez les insectes. Pendant ma thèse, je me suis intéressée à trois aspects des interactions possibles entre l'apprentissage et l'immunité chez la mouche du vinaigre Drosophila melanogaster, qui est un organisme modèle dans l'étude à la fois de l'apprentissage et de l'immunité. L'apprentissage peut affecter les défenses comportementales contre les parasites et les pathogènes par l'acquisition de nouvelles aversions pour la nourriture contaminée par exemple. Ce type d'apprentissage repose sur la capacité à associer une caractéristique de la nourriture avec la maladie qui suit l'ingestion de cette nourriture. Malgré les implications potentielles pour la prévention des infections, l'évitement appris des pathogènes a été rarement étudié chez les invertébrés. Dans une première partie de ma thèse, j'ai testé si les mouches, qui se nourrissent sur des milieux enrichis en micro-organismes, évitent de façon innée un 'nouveau' pathogène virulent Pseudomonas entomophila, et si elles ont la capacité d'apprendre à l'éviter. Bien que les mouches ne montrent pas d'évitement inné pour ce pathogène, elles diminuent leur préférence pour de la nourriture contaminée dans le temps, suggérant l'existence d'une forme d'apprentissage basée vraisemblablement sur la maladie générée par l'infection. J'ai ensuite observé que les mouches semblent être capables d'apprendre à éviter une odeur qui était au préalable associée avec ce pathogène, mais cela reste à confirmer par la collecte de données supplémentaires. Si cette observation est confirmée, cela sera la première fois, à ma connaissance, que l'évitement appris des pathogènes est décrit chez un insecte. L'effet détrimental des infections sur la cognition et plus particulièrement sur les capacités d'apprentissage est bien documenté chez les vertébrés et les insectes sociaux. Alors que les mécanismes sous-jacents sont détaillés chez les vertébrés, des études expérimentales font défaut chez les insectes. Dans une seconde partie de ma thèse, j'ai mesuré les effets d'une infection orale par des pathogènes naturels sur les capacités d'apprentissage associatif de la drosophile. Contrairement aux études précédentes chez les insectes, j'ai trouvé que les mouches infectées par le pathogène virulent P. entomophila apprennent mieux à associer une odeur avec des chocs mécaniques que des mouches non infectées. Cet effet semble spécifique à l'infection orale, et jusqu'à présent je n'ai pas pu conclure sur les contributions respectives de la virulence du pathogène et de l'activité immunitaire des mouches dans cet effet. De façon intéressante, les mouches infectées pourraient montrer une plus grande réactivité à la douleur physique. Si l'amélioration de l'apprentissage observée chez les mouches infectées était due en partie à l'activité du système immunitaire, mes résultats suggéreraient l'existence de connections physiologiques entre le système immunitaire et le système nerveux. Les mécanismes de ces connections seraient à explorer. L'apprentissage et l'immunité sont liés sur un plan physiologique chez les insectes sociaux. Les liens physiologiques entre les caractères résultent souvent de l'expression de liens entre ces caractères au niveau génétique. Cependant, chez les insectes sociaux, il n'y a pas de preuve que l'apprentissage et l'immunité soient liés par un compromis évolutif. J'ai précédemment rapporté un effet positif de l'infection sur l'apprentissage chez la drosophile. Cela pourrait suggérer qu'une relation génétique positive existerait entre l'apprentissage et l'immunité. Nous avons testé cette hypothèse par deux approches : le croisement diallèle avec des lignées consanguines, et les lignées isofemelles. Les deux approches ont fournies des résultats similaires : nous n'avons pas détecté de corrélation génétique additive entre l'apprentissage et la résistance à l'infection avec le croisement diallèle, et pas de corrélation génétique chez des mouches non adaptées aux conditions de laboratoire avec les lignées isofemelles. En ligne avec la littérature, ces deux études suggèrent que l'effet positif de l'infection sur l'apprentissage que j'ai précédemment observé ne refléterait pas un lien évolutif positif entre l'apprentissage et l'immunité. Néanmoins, l'existence de relations génétiques complexes n'est pas exclue.
Resumo:
O-Hexanoyl-3,5-diiodo-N-(4-azido-2-nitro-phenyl)tyramine has been used after photochemical conversion into the reactive nitrene to label (Na+,K+)-ATPase from Bufo marinus toad kidney. Immunochemical evidence indicates that the reagent labels both subunits of the enzyme in partially purified form as well as in microsomal membranes. These results support the view that the glycoprotein subunit, like the catalytic subunit, possesses hydrophobic domains by which it is integrated into the plasma membrane.
Resumo:
This study analyzed the spatial memory capacities of rats in darkness with visual and/or olfactory cues through ontogeny. Tests were conducted with the homing board, where rats had to find the correct escape hole. Four age groups (24 days, 48 days, 3-6 months, and 12 months) were trained in 3 conditions: (a) 3 identical light cues; (b) 5 different olfactory cues; and (c) both types of cues, followed by removal of the olfactory cues. Results indicate that immature rats first take into account olfactory information but are unable to orient with only the help of discrete visual cues. Olfaction enables the use of visual information by 48-day-old rats. Visual information predominantly supports spatial cognition in adult and 12-month-old rats. Results point out cooperation between vision and olfaction for place navigation during ontogeny in rats.
Resumo:
BACKGROUND: Cerebral cholinergic transmission plays a key role in cognitive function, and anticholinergic drugs administered during the perioperative phase are a hypothetical cause of postoperative cognitive dysfunction (POCD). We hypothesized that a perioperative increase in serum anticholinergic activity (SAA) is associated with POCD in elderly patients. METHODS: Seventy-nine patients aged >65 years undergoing elective major surgery under standardized general anesthesia (thiopental, sevoflurane, fentanyl, and atracurium) were investigated. Cognitive functions were assessed preoperatively and 7 days postoperatively using the extended version of the CERAD-Neuropsychological Assessment Battery. POCD was defined as a postoperative decline >1 z-score in at least 2 test variables. SAA was measured preoperatively and 7 days postoperatively at the time of cognitive testing. Hodges-Lehmann median differences and their 95% confidence intervals were calculated for between-group comparisons. RESULTS: Of the patients who completed the study, 46% developed POCD. Patients with POCD were slightly older and less educated than patients without POCD. There were no relevant differences between patients with and without POCD regarding gender, demographically corrected baseline cognitive functions, and duration of anesthesia. There were no large differences between patients with and without POCD regarding SAA preoperatively (pmol/mL, median [interquartile range]/median difference [95% CI], P; 1.14 [0.72, 2.37] vs 1.13 [0.68, 1.68]/0.12 [-0.31, 0.57], P = 0.56), SAA 7 days postoperatively (1.32 [0.68, 2.59] vs 0.97 [0.65, 1.83]/0.25 [-0.26, 0.81], P = 0.37), or changes in SAA (0.08 [-0.50, 0.70] vs -0.02 [-0.53, 0.41]/0.1 [-0.31, 0.52], P = 0.62). There was no significant relationship between changes in SAA and changes in cognitive function (Spearman rank correlation coefficient preoperatively of 0.03 [95% CI, -0.21, 0.26] and postoperatively of -0.002 [95% CI, -0.24, 0.23]). CONCLUSIONS: In this panel of patients with low baseline SAA and clinically insignificant perioperative anticholinergic burden, although a relationship cannot be excluded in some patients, our analysis suggests that POCD is probably not a substantial consequence of anticholinergic medications administered perioperatively but rather due to other mechanisms.
Resumo:
This paper characterizes and evaluates the potential of three commercial CT iterative reconstruction methods (ASIR?, VEO? and iDose(4 ()?())) for dose reduction and image quality improvement. We measured CT number accuracy, standard deviation (SD), noise power spectrum (NPS) and modulation transfer function (MTF) metrics on Catphan phantom images while five human observers performed four-alternative forced-choice (4AFC) experiments to assess the detectability of low- and high-contrast objects embedded in two pediatric phantoms. Results show that 40% and 100% ASIR as well as iDose(4) levels 3 and 6 do not affect CT number and strongly decrease image noise with relative SD constant in a large range of dose. However, while ASIR produces a shift of the NPS curve apex, less change is observed with iDose(4) with respect to FBP methods. With second-generation iterative reconstruction VEO, physical metrics are even further improved: SD decreased to 70.4% at 0.5 mGy and spatial resolution improved to 37% (MTF(50%)). 4AFC experiments show that few improvements in detection task performance are obtained with ASIR and iDose(4), whereas VEO makes excellent detections possible even at an ultra-low-dose (0.3 mGy), leading to a potential dose reduction of a factor 3 to 7 (67%-86%). In spite of its longer reconstruction time and the fact that clinical studies are still required to complete these results, VEO clearly confirms the tremendous potential of iterative reconstructions for dose reduction in CT and appears to be an important tool for patient follow-up, especially for pediatric patients where cumulative lifetime dose still remains high.
Resumo:
The neuropsychological records of 56 patients operated for clipping were studied. Almost every patient remained autonomous and without invalidating motor defect. The present study was aimed at specifying the type and frequency of neuropsychological sequelae and, to a lesser extent, the role of various pathophysiological factors. A main concern was to examine to what extent and at what post-operative interval the neuropsychological assessment can predict the intellectual and socioprofessional outcome of each individual patient. The neuropsychological assessment performed beyond the acute phase showed evidence of intellectual sequelae in about two thirds of the patients. Only one case of permanent anterograde amnesia was observed, probably due to unavoidable inclusion of a hypothalamic artery in the clip during surgery. Transient anterograde amnesia and confabulations were occasionally observed, generally for less than three weeks. A common finding was impaired performance on memory and/or executive tests. In a minority of patients, language disorders, visuoperceptive and visuoconstructive disabilities were found, probably in relation with hemodynamic changes at distance from the aneurysm. Global impairment of intellectual function was not uncommon in the acute post-operative phase but it evolved in most cases towards a more selective impairment, for instance restricted to executive and memory functions, in the chronic phase. The neuropsychological investigation carried out 4 to 15 weeks post-operatively provided satisfactory information about possible long-lasting intellectual disturbances and professional resumption. In particular, persistent global intellectual impairment, persistent amnesia and confabulations 4-15 weeks post-operative were associated with cessation of professional activity; executive and memory impairment, behavioral disturbances such as those encountered in patients with frontal lobe damage were associated with a decreased probability of full-time employment. Pre- and post-operative angiography were not good predictors of long-term cognitive outcome: normal angiography was not necessarily followed by normal neuropsychological outcome, conversely abnormal angiography could be found together with normal neuropsychological outcome. By contrast, there was a relationship between left-lateralised abnormalities on post-operative angiography and occurrence of language disorders; similarly, there was a relationship between side of craniotomy and type of deficits, that is language disorders versus visuoperceptive-visuoconstructive impairments.
Resumo:
The study investigates associations between attachment cognitions and depression symptoms in 71 15-25-year-olds, 26 of whom have eating disorders, and 20 of whom are drug misusers. Attachment cognitions were measured with the CaMir Q-sort, which provides indexes for secure, avoidant, and preoccupied attachment, as well as scores on 13 dimensions. The BDI-13 was used to measure depressive symptomatology. Consistent with the literature, BDI scores were associated with cognitions of preoccupied attachment. They were also related to cognitions of avoidant attachment, confirming Bowlby's theory on defensive exclusion. For participants with eating disorders, depressive symptomatology was related to preoccupation and parental interference, whereas for drug misusers, it was negatively related to security, preoccupation, parental support, and lack of parental concern. These findings help understand how attachment cognitions may participate in depressive symptomatology, namely in youth whose behavior problems may be associated with specific attachment experiences.
Resumo:
Abstract Introduction The primary function of the contractile vascular smooth muscle cells (cVSMCs) is the regulation of the vascular contractility which means the adaptation of the vascular tonus in response to the modulation of the blood pressure and blood flow. The cVSMCs are essentially quiescent, and therefore their synthesis rate is very limited. They are characterized by the expression of contractile proteins specific to the muscular tissue including myosin, h-‐caldesmon and <-‐smooth muscle actin (〈-‐SMA). These contractile cells are strongly represented in the media layer of the arterial wall and, in a smaller proportion, of the vein wall. Their typical stretched-‐out morphology allows recognizing them by a histological analysis. They do not produce any extracellular matrix (ECM), and do not migrate through the different layers of the vessel wall, and are not directly involved in the development of intimal hyperplasia (IH). Neointimal formation occurs after endothelial disruption leading to complex molecular and biological mechanisms. The de-‐differentiation of cVSMCs into synthetic VSMCs (sVSMCs) is mentioned as a key element. These non mature cells are able to proliferate and produce ECM. The characterization of the vascular smooth muscle cells (VSMCs) from healthy and stenosed vascular tissues will contribue to the understanding of the different biological processes leading to IH and will be useful for the development of new therapies to interfere with the cVSMCs growth and migration. The aim of our research was to quantify the proportion of cVSMCs and sVSMCs into the healthy and pathologic human blood vessel wall and to characterize their phenotype. Methods We selected 23 specimens of arterial and venous segments from 18 patients. All these specimens were stored in the biobank from the thoracic and vascular surgery departement. 4 groups were designed (group 1 :arteries without lesions (n=3) ;group 2 : veins without lesions (n=1); group 3: arteries with stenosis (n=9); group 4: veins with stenosis (n=10)). Histology: 5µm-‐sections were made from each sample embedded in paraffin wax and further stained with hematoxylin & eosin (HE), Van Gieson's stain (VGEL) and Masson's Trichrome (TMB). Pathologic tissues were defined using the label that was given to the macroscopic samples by the surgeon and also, based on the histological analysis with HE and VGEL evaluating the presence of a thickened intima. The same was done to the control samples evaluating the absence of thickening. Immunohistochemistry : The primary antibodies were used :〈-‐SMA, vimentin, h-‐ caldesmon, calponin, smooth muscle-myosin heavy chain (SM-‐MHC), tropomyosin-‐4, retinol binding protein-‐1 (RBP-‐1), nonmuscle-‐myosin heavy chain-‐B (NM-‐MHC-‐B), Von Willebrand factor (VWF). A semi-‐quantitative assessment of the intensity of each sample stained was performed. Western Blot : Segments of arteries and veins were analyzed using the following primary antibodies :〈-‐SMA, Calponin, SM-‐MHC, NM-‐MHC-‐B. The given results were then normalized with tubulin. Results Our data showed that, when using immunohistochemistry analysis we found that〈-‐SMA was mostly expressed in control arteries, whereas NM-‐MHC-‐B in the pathologic ones. Using SM-‐MHC, calponin, vimentin and caldesmon we found no significative differences in the expression of these proteins in the control and in the pathologic samples. Western Blot analysis showed an inverse correlation between healthy and pathological samples as <-‐ SMA was more expressed in the pathological samples, while NM-‐MHC-‐B in the control group; SM-‐MHC and calponin were mostly expressed in the pathologic samples. Conclusion Our study showed no clear differences between stenotic and control arterial and venous segments using semi-‐quantitative assessement by immunohistochemistry. Western Blot showed a significant increased expression of 〈-‐SMA, calponin and SM-‐MHC in the arteries with stenosis, while NM-‐MHC-‐B was mostly expressed in the arteries without lesions. Further studies are needed to track the lineage of VSMCs to understand the mechanisms leading toIH.
Resumo:
OBJECTIVE: To examine the relationship between reward sensitivity and self-reported apathy in stroke patients and to investigate the neuroanatomical correlates of both reward sensitivity and apathy. METHODS: In this prospective study, 55 chronic stroke patients were administered a questionnaire to assess apathy and a laboratory task to examine reward sensitivity by measuring motivationally driven behavior ("reinforcement-related speeding"). Fifteen participants without brain damage served as controls for the laboratory task. Negative mood, working memory, and global cognitive functioning were also measured to determine whether reward insensitivity and apathy were secondary to cognitive impairments or negative mood. Voxel-based lesion-symptom mapping was used to explore the neuroanatomical substrates of reward sensitivity and apathy. RESULTS: Participants showed reinforcement-related speeding in the highly reinforced condition of the laboratory task. However, this effect was significant for the controls only. For patients, poorer reward sensitivity was associated with greater self-reported apathy (p < 0.05) beyond negative mood and after lesion size was controlled for. Neither apathy nor reward sensitivity was related to working memory or global cognitive functioning. Voxel-based lesion-symptom mapping showed that damage to the ventral putamen and globus pallidus, dorsal thalamus, and left insula and prefrontal cortex was associated with poorer reward sensitivity. The putamen and thalamus were also involved in self-reported apathy. CONCLUSIONS: Poor reward sensitivity in stroke patients with damage to the ventral basal ganglia, dorsal thalamus, insula, or prefrontal cortex constitutes a core feature of apathy. These results provide valuable insight into the neural mechanisms and brain substrate underlying apathy.
Biological embedding of early life exposures and disease risk in humans: a role for DNA methylation.
Resumo:
BACKGROUND: Following wider acceptance of "the thrifty phenotype" hypothesis and the convincing evidence that early life exposures can influence adult health even decades after the exposure, much interest has been placed on the mechanisms through which early life exposures become biologically embedded. METHODS: In this review, we summarize the current literature regarding biological embedding of early life experiences. To this end we conducted a literature search to identify studies investigating early life exposures in relation to DNA methylation changes. In addition, we summarize the challenges faced in investigations of epigenetic effects, stemming from the peculiarities of this emergent and complex field. A proper systematic review and meta-analyses were not feasible given the nature of the evidence. RESULTS: We identified 7 studies on early life socioeconomic circumstances, 10 studies on childhood obesity, and 6 studies on early life nutrition all relating to DNA methylation changes that met the stipulated inclusion criteria. The pool of evidence gathered, albeit small, favours a role of epigenetics and DNA methylation in biological embedding, but replication of findings, multiple comparison corrections, publication bias, and causality are concerns remaining to be addressed in future investigations. CONCLUSIONS: Based on these results, we hypothesize that epigenetics, in particular DNA methylation, is a plausible mechanism through which early life exposures are biologically embedded. This review describes the current status of the field and acts as a stepping stone for future, better designed investigations on how early life exposures might become biologically embedded through epigenetic effects. This article is protected by copyright. All rights reserved.
Resumo:
Navigation by means of cognitive maps appears to require the hippocampus; hippocampal place cells (PCs) appear to store spatial memories because their discharge is confined to cell-specific places called firing fields (FFs). Experiments with rats manipulated idiothetic and landmark-related information to understand the relationship between PC activity and spatial rotation. Rotating a circular arena in the caused a discrepancy between these cuse. This discrepancy caused most FFs to disappear in both the arena and room reference frames. However, FFs persisted in the rotating arena frame when the discrepancy was reduced by darkness or by a card in the arena. The discrepancy was increased by "field clamping" the rat in a room-defined FF location by rotations that countered its locomotion. Most FFs disspared and reappeared an hour or more after the clamp. Place-avoidance experiments showed that navigation uses independent idiothetic and exteroceptive memories. Rats learned to avoid the unmarked footshock region within a circular arena. When acquired on the stable arena in the light, the location of the punishment was learned by using both room and idiothetic cues; extinction in the dark transferred to the following session in the light. If, however, extinction occured during rotation, only the arena-frame avoidance was extinguished in darkness; the room-defined location was avoided when the light were turned back on. Idiothetic memory of room-defined avoidance was not formed during rotation in light; regardless of rotation with a randomly dispersed pellet. The resulting behaviour alternated between random pellet searching and target-directed navigation, making it possible to examine PC correlates of these two classes of spatial behaviour. The independence of idiothetic and exteroceptive spatial memories and the disruption of PC firing during rotation suggest that PCs may not be necessary for spatial cognition; this idea can be tested by recording during place-avoidance and preference tasks.
Resumo:
Backgrounds:¦Behavioural and psychological symptoms of dementia (BPSD) include, among others, hallucinations, delusions, depression, euphoria, agitation, aggression, sexual desinhibition, sleep disturbances, and apathy (1). To our knowledge, surprisingly few studies looked into the possible association between pain and BPSD in nursing home residents. Given this dearth of studies, we wondered whether or not there is an association, in nursing home residents, between pain and BPSD, in particular wandering as well as verbally and physically abusive behaviour, and whether or not this possible association changes with the degree of cognitive impairment.¦Method:¦All nursing home residents in the three Swiss cantons Aargau, Basel-City, and Solothurn (corresponding to 13.5%¦of the total Swiss population) receive a Resident Assessment Instrument Minimum Data Set (RAI-MDS)¦assessment within the first two weeks upon entry. This yielded a total sample of 16'430 nursing home residents considering that the residents' assessment took place between 1997 and 2007 and that we only took into account the admission RAI-MDS assessment. Only residents for whom data on pain was recorded were included in the study (n = 16'183).¦Results:¦Wandering correlated significantly with pain although the effect size was small (Spearman correlation coefficient = 0.052; p = 0.000), a result very similar to that found for VAB (Spearman correlation coefficient = 0.034; p = 0.000) and PAB (Spearman correlation coefficient = 0.043; p = 0.000). Likewise, using linear regression analyses, pain was very significantly associated with any of the three BPSD considered, but it predicted astonishingly little of the¦variance observed (wandering: B = 0.036; p = 0.000; R2 = 0.002; VAB: B = 0.021; p = 0.000; R2 = 0.001 PAB: B = 0.012; p = 0.000; R2 = 0.001). The interaction of pain and cognition had a significant effect on the three BPSD, suggesting that cognition was a moderator of the relationship between pain and all three behaviours.¦Conclusion:¦Wandering behaviours, VAB and PAB seem to be predicted by many factors. Although pain predicts only a small part of variance of these behaviours, it still remains important to recognise and treat pain in order to reduce these behaviours at least a little both in intensity and frequency. Given the dearth of studies and their somewhat contradictory results, further studies ought to investigate the role, the type and localisation of pain might play on the expression of different BPSD or how residents suffering from dementia perceive pain.