110 resultados para Ecological and Strategic Sensitivity of Ports
Resumo:
The sequence profile method (Gribskov M, McLachlan AD, Eisenberg D, 1987, Proc Natl Acad Sci USA 84:4355-4358) is a powerful tool to detect distant relationships between amino acid sequences. A profile is a table of position-specific scores and gap penalties, providing a generalized description of a protein motif, which can be used for sequence alignments and database searches instead of an individual sequence. A sequence profile is derived from a multiple sequence alignment. We have found 2 ways to improve the sensitivity of sequence profiles: (1) Sequence weights: Usage of individual weights for each sequence avoids bias toward closely related sequences. These weights are automatically assigned based on the distance of the sequences using a published procedure (Sibbald PR, Argos P, 1990, J Mol Biol 216:813-818). (2) Amino acid substitution table: In addition to the alignment, the construction of a profile also needs an amino acid substitution table. We have found that in some cases a new table, the BLOSUM45 table (Henikoff S, Henikoff JG, 1992, Proc Natl Acad Sci USA 89:10915-10919), is more sensitive than the original Dayhoff table or the modified Dayhoff table used in the current implementation. Profiles derived by the improved method are more sensitive and selective in a number of cases where previous methods have failed to completely separate true members from false positives.
Resumo:
BACKGROUND: Tropomyosin (TM), an essential actin-binding protein, is central to the control of calcium-regulated striated muscle contraction. Although TPM1alpha (also called alpha-TM) is the predominant TM isoform in human hearts, the precise TM isoform composition remains unclear. METHODS AND RESULTS: In this study, we quantified for the first time the levels of striated muscle TM isoforms in human heart, including a novel isoform called TPM1kappa. By developing a TPM1kappa-specific antibody, we found that the TPM1kappa protein is expressed and incorporated into organized myofibrils in hearts and that its level is increased in human dilated cardiomyopathy and heart failure. To investigate the role of TPM1kappa in sarcomeric function, we generated transgenic mice overexpressing cardiac-specific TPM1kappa. Incorporation of increased levels of TPM1kappa protein in myofilaments leads to dilated cardiomyopathy. Physiological alterations include decreased fractional shortening, systolic and diastolic dysfunction, and decreased myofilament calcium sensitivity with no change in maximum developed tension. Additional biophysical studies demonstrate less structural stability and weaker actin-binding affinity of TPM1kappa compared with TPM1alpha. CONCLUSIONS: This functional analysis of TPM1kappa provides a possible mechanism for the consequences of the TM isoform switch observed in dilated cardiomyopathy and heart failure patients.
Resumo:
A major challenge in community ecology is a thorough understanding of the processes that govern the assembly and composition of communities in time and space. The growing threat of climate change to the vascular plant biodiversity of fragile ecosystems such as mountains has made it equally imperative to develop comprehensive methodologies to provide insights into how communities are assembled. In this perspective, the primary objective of this PhD thesis is to contribute to the theoretical and methodological development of community ecology, by proposing new solutions to better detect the ecological and evolutionary processes that govern community assembly. As phylogenetic trees provide by far, the most advanced tools to integrate the spatial, ecological and evolutionary dynamics of plant communities, they represent the cornerstone on which this work was based. In this thesis, I proposed new solutions to: (i) reveal trends in community assembly on phylogenies, depicted by the transition of signals at the nodes of the different species and lineages responsible for community assembly, (ii) contribute to evidence the importance of evolutionarily labile traits in the distribution of mountain plant species. More precisely, I demonstrated that phylogenetic and functional compositional turnover in plant communities was driven by climate and human land use gradients mostly influenced by evolutionarily labile traits, (iii) predict and spatially project the phylogenetic structure of communities using species distribution models, to identify the potential distribution of phylogenetic diversity, as well as areas of high evolutionary potential along elevation. The altitudinal setting of the Diablerets mountains (Switzerland) provided an appropriate model for this study. The elevation gradient served as a compression of large latitudinal variations similar to a collection of islands within a single area, and allowed investigations on a large number of plant communities. Overall, this thesis highlights that stochastic and deterministic environmental filtering processes mainly influence the phylogenetic structure of plant communities in mountainous areas. Negative density-dependent processes implied through patterns of phylogenetic overdispersion were only detected at the local scale, whereas environmental filtering implied through phylogenetic clustering was observed at both the regional and local scale. Finally, the integration of indices of phylogenetic community ecology with species distribution models revealed the prospects of providing novel and insightful explanations on the potential distribution of phylogenetic biodiversity in high mountain areas. These results generally demonstrate the usefulness of phylogenies in inferring assembly processes, and are worth considering in the theoretical and methodological development of tools to better understand phylogenetic community structure.
Resumo:
OBJECTIVES: To conduct a national survey on adolescent health and lifestyles in Georgia and to thus set up a database on adolescent. METHODS: A two-stage cluster sample of around 8000-10000 in-school 15-18 years adolescents are being reached through a random selection of classes in Georgia. The sample has been stratified by age, region, type of school and language. A self-administered questionnaire of 87 questions has been developed and translated into the four main languages used in Georgia. RESULTS: Up to June 2004, the researchers have reached 511 classes (9306 pupils). In total, 8039 questionnaires have been considered valid. The main concerns encountered for this survey are linked with acceptance of the survey, cross-cultural issues, political and strategic problems as well as inadequate physical environmental support. CONCLUSION: Despite Georgia's unfavourable economical and political situation, it has been possible to run a national survey on the health of adolescents, according to the usual standards used in the field. This survey should allow for 1) the identification of priorities in the field of health care and health promotion 2) the monitoring of adolescent health in the future.
Resumo:
Computed Tomography (CT) represents the standard imaging modality for tumor volume delineation for radiotherapy treatment planning of retinoblastoma despite some inherent limitations. CT scan is very useful in providing information on physical density for dose calculation and morphological volumetric information but presents a low sensitivity in assessing the tumor viability. On the other hand, 3D ultrasound (US) allows a highly accurate definition of the tumor volume thanks to its high spatial resolution but it is not currently integrated in the treatment planning but used only for diagnosis and follow-up. Our ultimate goal is an automatic segmentation of gross tumor volume (GTV) in the 3D US, the segmentation of the organs at risk (OAR) in the CT and the registration of both modalities. In this paper, we present some preliminary results in this direction. We present 3D active contour-based segmentation of the eye ball and the lens in CT images; the presented approach incorporates the prior knowledge of the anatomy by using a 3D geometrical eye model. The automated segmentation results are validated by comparing with manual segmentations. Then, we present two approaches for the fusion of 3D CT and US images: (i) landmark-based transformation, and (ii) object-based transformation that makes use of eye ball contour information on CT and US images.
Resumo:
Gesneriaceae are represented in the New World (NW) by a major clade (c. 1000 species) currently recognized as subfamily Gesnerioideae. Radiation of this group occurred in all biomes of tropical America and was accompanied by extensive phenotypic and ecological diversification. Here we performed phylogenetic analyses using DNA sequences from three plastid loci to reconstruct the evolutionary history of Gesnerioideae and to investigate its relationship with other lineages of Gesneriaceae and Lamiales. Our molecular data confirm the inclusion of the South Pacific Coronanthereae and the Old World (OW) monotypic genus Titanotrichum in Gesnerioideae and the sister-group relationship of this subfamily to the rest of the OW Gesneriaceae. Calceolariaceae and the NW genera Peltanthera and Sanango appeared successively sister to Gesneriaceae, whereas Cubitanthus, which has been previously assigned to Gesneriaceae, is shown to be related to Linderniaceae. Based on molecular dating and biogeographical reconstruction analyses, we suggest that ancestors of Gesneriaceae originated in South America during the Late Cretaceous. Distribution of Gesneriaceae in the Palaeotropics and Australasia was inferred as resulting from two independent long-distance dispersals during the Eocene and Oligocene, respectively. In a short time span starting at 34 Mya, ancestors of Gesnerioideae colonized several Neotropical regions including the tropical Andes, Brazilian Atlantic forest, cerrado, Central America and the West Indies. Subsequent diversification within these areas occurred largely in situ and was particularly extensive in the mountainous systems of the Andes, Central America and the Brazilian Atlantic forest. Only two radiations account for 90% of the diversity of Gesneriaceae in the Brazilian Atlantic forest, whereas half of the species richness in the northern Andes and Central America originated during the last 10 Myr from a single radiation.
Resumo:
The involvement of voltage-gated calcium channels in the survival of immature CNS neurons was studied in aggregating brain cell cultures by examining cell type-specific effects of various channel blockers. Nifedipine (10 microM), a specific blocker of L-type calcium channels, caused a pronounced and irreversible decrease of glutamic acid decarboxylase activity, whereas the activity of choline acetyltransferase was significantly less affected. Flunarizine (1-10 microM, a relatively unspecific ion channel blocker) elicited similar effects, that were attenuated by NMDA. The glia-specific marker enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase, were affected only after treatment with high concentrations of nifedipine (50 microM) or NiCl2 (100 microM, shown to block T-type calcium channels). Nifedipine (50 microM), NiCl2 (100 microM), and flunarizine (5 microM) also caused a significant increase in the soluble nucleosome concentration, indicating increased apoptotic cell death. This effect was prevented by cycloheximide (1 microM). Furthermore, the combined treatment with calcicludine (10 nM, blocking L-type calcium channels) and funnel-web spider toxin-3.3 (100 nM, blocking T-type channels) also caused a significant increase in free nucleosomes as well as a decrease in glutamic acid decarboxylase activity. In contrast, cell viability was not affected by peptide blockers specific for N-, P-, and/or Q-type calcium channels. Highly differentiated cultures showed diminished susceptibility to nifedipine and flunarizine. The present data suggest that the survival of immature neurons, and particularly that of immature GABAergic neurons, requires the sustained entry of Ca2+ through voltage-gated calcium channels.
Resumo:
The application of plant-beneficial pseudomonads provides a promising alternative to chemical pest management in agriculture. The fact that Pseudomonas fluorescens CHA0 and Pf-5, both well-known biocontrol agents of fungal root diseases, exhibit also potent insecticidal activity is of particular interest, as these plant-beneficial bacteria naturally colonize the rhizosphere of important crop plants. Insecticidal activity in these strains depends on a novel locus encoding the production of a protein toxin termed Fit (for P. fluorescens insecticidal toxin). To gain a better understanding of the ecological relevance of the Pseudomonas anti-insect activity, we have begun to investigate the occurrence and molecular diversity of the Fit toxin genes among root-associated pseudomonads. To this end, we have screened a large world-wide collection of fluorescent Pseudomonas sp. isolated from the roots of different plant species using molecular fingerprinting techniques. The strains are already well characterized for exoproduct patterns and disease-suppressive ability and are currently being tested for insecticidal activity in a greater wax moth larvae assay system.
A filtering method to correct time-lapse 3D ERT data and improve imaging of natural aquifer dynamics
Resumo:
We have developed a processing methodology that allows crosshole ERT (electrical resistivity tomography) monitoring data to be used to derive temporal fluctuations of groundwater electrical resistivity and thereby characterize the dynamics of groundwater in a gravel aquifer as it is infiltrated by river water. Temporal variations of the raw ERT apparent-resistivity data were mainly sensitive to the resistivity (salinity), temperature and height of the groundwater, with the relative contributions of these effects depending on the time and the electrode configuration. To resolve the changes in groundwater resistivity, we first expressed fluctuations of temperature-detrended apparent-resistivity data as linear superpositions of (i) time series of riverwater-resistivity variations convolved with suitable filter functions and (ii) linear and quadratic representations of river-water-height variations multiplied by appropriate sensitivity factors; river-water height was determined to be a reliable proxy for groundwater height. Individual filter functions and sensitivity factors were obtained for each electrode configuration via deconvolution using a one month calibration period and then the predicted contributions related to changes in water height were removed prior to inversion of the temperature-detrended apparent-resistivity data. Applications of the filter functions and sensitivity factors accurately predicted the apparent-resistivity variations (the correlation coefficient was 0.98). Furthermore, the filtered ERT monitoring data and resultant time-lapse resistivity models correlated closely with independently measured groundwater electrical resistivity monitoring data and only weakly with the groundwater-height fluctuations. The inversion results based on the filtered ERT data also showed significantly less inversion artefacts than the raw data inversions. We observed resistivity increases of up to 10% and the arrival time peaks in the time-lapse resistivity models matched those in the groundwater resistivity monitoring data.
Resumo:
We consider one-to-one matching markets in which agents can either be matched as pairs or remain single. In these so-called roommate markets agents are consumers and resources at the same time. Klaus (Games Econ Behav 72:172-186, 2011) introduced two new "population sensitivity" properties that capture the effect newcomers have on incumbent agents: competition sensitivity and resource sensitivity. On various roommate market domains (marriage markets, no-odd-rings roommate markets, solvable roommate markets),we characterize the core using either of the population sensitivity properties in addition to weak unanimity and consistency. On the domain of all roommate markets, we obtain two associated impossibility results.
Resumo:
We study the strategic interaction between a decision maker who needs to take a binary decision but is uncertain about relevant facts and an informed expert who can send a message to the decision maker but has a preference over the decision.We show that the probability that the expert can persuade the decision maker to take the expert's preferred decision is a hump-shaped function of his costs of sending dishonest messages.
Resumo:
BACKGROUND: Cytomegalovirus (CMV) infection is associated with significant morbidity and mortality in transplant recipients. Resistance against ganciclovir is increasingly observed. According to current guidelines, direct drug resistance testing is not always performed due to high costs and work effort, even when resistance is suspected. OBJECTIVES: To develop a more sensitive, easy applicable and cost-effective assay as proof of concept for direct drug resistance testing in CMV surveillance of post-transplant patients. STUDY DESIGN: Five consecutive plasma samples from a heart transplant patient with a primary CMV infection were analyzed by quantitative real-time polymerase chain reaction (rtPCR) as a surrogate marker for therapy failure, and by direct drug resistance detection assays such as Sanger sequencing and the novel primer extension (PEX) reaction matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) based method. RESULTS: This report demonstrates that PEX reaction followed by MALDI-TOF analysis detects the A594V mutation, encoding ganciclovir resistance, ten days earlier compared to Sanger sequencing and more than 30 days prior to an increase in viral load. CONCLUSION: The greatly increased sensitivity and rapid turnaround-time combined with easy handling and moderate costs indicate that this procedure could make a major contribution to improve transplantation outcomes.
Resumo:
OBJECTIVES: To assess the incremental cost-effectiveness ratio (ICER) and incremental cost-utility ratio (ICUR) of risedronate compared to no intervention in postmenopausal osteoporotic women in a Swiss perspective. METHODS: A previously validated Markov model was populated with epidemiological and cost data specific to Switzerland and published utility values, and run on a population of 1,000 women of 70 years with established osteoporosis and previous vertebral fracture, treated over 5 years with risedronate 35 mg weekly or no intervention (base case), and five cohorts (according to age at therapy start) with eight risk factor distributions and three lengths of residual effects. RESULTS: In the base case population, the ICER of averting a hip fracture and the ICUR per quality-adjusted life year gained were both dominant. In the presence of a previous vertebral fracture, the ICUR was below euro45,000 (pound30,000) in all the scenarios. For all osteoporotic women>or=70 years of age with at least one risk factor, the ICUR was below euro45,000 or the intervention may even be cost saving. Age at the start of therapy and the fracture risk profile had a significant impact on results. CONCLUSION: Assuming a 2-year residual effect, that ICUR of risedronate in women with postmenopausal osteoporosis is below accepted thresholds from the age of 65 and even cost saving above the age of 70 with at least one risk factor.
Resumo:
Glycopeptide resistance, in a set of in vitro step-selected teicoplanin-resistant mutants derived from susceptible Staphylococcus aureus SA113, was associated with slower growth, thickening of the bacterial cell wall, increased N-acetylglucosamine incorporation, and decreased hemolysis. Differential transcriptome analysis showed that as resistance increased, some virulence-associated genes became downregulated. In a mouse tissue cage infection model, an inoculum of 10(4) CFU of strain SA113 rapidly produced a high-bacterial-load infection, which triggered MIP-2 release, leukocyte infiltration, and reduced leukocyte viability. In contrast, with the same inoculum of the isogenic glycopeptide-resistant derivative NM67, CFU initially decreased, resulting in the elimination of the mutant in three out of seven cages. In the four cages in which NM67 survived, it partially regained wild-type characteristics, including thinning of the cell wall, reduced N-acetylglucosamine uptake, and increased hemolysis; however, the survivors also became teicoplanin hypersusceptible. The elimination of the teicoplanin-resistant mutants and selection of teicoplanin-hypersusceptible survivors in the tissue cages indicated that glycopeptide resistance imposes a fitness burden on S. aureus and is selected against in vivo, with restoration of fitness incurring the price of resistance loss.
Resumo:
BACKGROUND: A 70-gene signature was previously shown to have prognostic value in patients with node-negative breast cancer. Our goal was to validate the signature in an independent group of patients. METHODS: Patients (n = 307, with 137 events after a median follow-up of 13.6 years) from five European centers were divided into high- and low-risk groups based on the gene signature classification and on clinical risk classifications. Patients were assigned to the gene signature low-risk group if their 5-year distant metastasis-free survival probability as estimated by the gene signature was greater than 90%. Patients were assigned to the clinicopathologic low-risk group if their 10-year survival probability, as estimated by Adjuvant! software, was greater than 88% (for estrogen receptor [ER]-positive patients) or 92% (for ER-negative patients). Hazard ratios (HRs) were estimated to compare time to distant metastases, disease-free survival, and overall survival in high- versus low-risk groups. RESULTS: The 70-gene signature outperformed the clinicopathologic risk assessment in predicting all endpoints. For time to distant metastases, the gene signature yielded HR = 2.32 (95% confidence interval [CI] = 1.35 to 4.00) without adjustment for clinical risk and hazard ratios ranging from 2.13 to 2.15 after adjustment for various estimates of clinical risk; clinicopathologic risk using Adjuvant! software yielded an unadjusted HR = 1.68 (95% CI = 0.92 to 3.07). For overall survival, the gene signature yielded an unadjusted HR = 2.79 (95% CI = 1.60 to 4.87) and adjusted hazard ratios ranging from 2.63 to 2.89; clinicopathologic risk yielded an unadjusted HR = 1.67 (95% CI = 0.93 to 2.98). For patients in the gene signature high-risk group, 10-year overall survival was 0.69 for patients in both the low- and high-clinical risk groups; for patients in the gene signature low-risk group, the 10-year survival rates were 0.88 and 0.89, respectively. CONCLUSIONS: The 70-gene signature adds independent prognostic information to clinicopathologic risk assessment for patients with early breast cancer.