97 resultados para CYTOCHROMES P450
Resumo:
The peroxisome proliferator-activated receptor (PPAR) is a member of the steroid hormone receptor superfamily and is activated by a variety of fibrate hypolipidaemic drugs and non-genotoxic rodent hepatocarcinogens that are collectively termed peroxisome proliferators. A key marker of peroxisome proliferator action is the peroxisomal enzyme acyl CoA oxidase, which is elevated about ten fold in the livers of treated rodents. Additional peroxisome proliferator responsive genes include other peroxisomal beta-oxidation enzymes and members of the cytochrome P450 IVA family. A peroxisome proliferator response element (PPRE), consisting of an almost perfect direct repeat of the sequence TGACCT spaced by a single base pair, has been identified in the upstream regulatory sequences of each of these genes. The retinoid X receptor (RXR) forms a heterodimer with PPAR and binds to the PPRE. Furthermore, the RXR ligand, 9-cis retinoic acid, enhances PPAR action. Retinoids may therefore modulate the action of peroxisome proliferators and PPAR may interfere with retinoid action, perhaps providing one mechanism to explain the toxicity of peroxisome proliferators. Interestingly, a variety of fatty acids can activate PPAR supporting the suggestion that fatty acids, or their acyl CoA derivatives, may be the natural ligands of PPAR and that the physiological role of PPAR is to regulate fatty acid homeostasis. Taken together, the discovery of PPAR has opened up new opportunities in understanding how lipid homeostasis is regulated, how the fibrate hypolipidaemic drugs may act and should lead to improvements in the assessment of human risk from peroxisome proliferators based upon a better understanding of their mechanism of action.
Resumo:
The selective serotonin reuptake inhibitor fluoxetine is administered as a racemic mixture, and R- and S-fluoxetine are metabolized in the liver by N-demethylation to R- and S-norfluoxetine, respectively. R- and S-fluoxetine and S-norfluoxetine are equally potent selective serotonin reuptake inhibitors, but R-norfluoxetine is 20-fold less potent in this regard. Racemic fluoxetine and norfluoxetine are potent inhibitors of cytochrome P450 (CYP) 2D6 in vivo and in vitro and recent studies in vivo have shown that racemic fluoxetine is metabolized by CYP2D6. The primary aim of the present study was to investigate the stereoselective metabolism of fluoxetine and norfluoxetine by CYP2D6 in vivo. A single oral dose of fluoxetine (60 mg) was administered to six poor and six extensive metabolizers of sparteine. Blood samples were collected during 6 weeks for poor metabolizers and 3 weeks for extensive metabolizers. Once a week a sparteine test was performed. The R- and S-enantiomers of fluoxetine and norfluoxetine were determined by a stereoselective gas chromatography-mass spectroscopy method. In the poor metabolizers, the oral clearance of R- and S-fluoxetine was 3.0 l/h and 17 l/h, respectively, the corresponding values in the extensive metabolizers were 36 l/h and 40 l/h, respectively. For both enantiomers, the phenotype difference was statistically significant. In poor metabolizers, the elimination half-lives were 6.9 days and 17.4 days for R- and S-norfluoxetine, respectively, and in the extensive metabolizers it was 5.5 days for both enantiomers, a significant phenotypical difference only for S-norfluoxetine. For fluoxetine the elimination half-lives were 9.5 and 6.1 days in poor metabolizers for the R- and S-enantiomer, respectively. The corresponding values in the extensive metabolizers were 2.6 and 1.1 days, respectively. Also for this parameter, the differences were statistically significant. This study shows that CYP2D6 catalyses the metabolism of R- and S-fluoxetine and most likely the further metabolism of S-norfluoxetine but not of R-norfluoxetine.
Resumo:
For weeks after primary immunization with thymus-dependent antigens the responding lymph nodes contain effector CD4 T cells in T zones and germinal centers as well as recirculating memory T cells. Conversely, remote nodes, not exposed to antigen, only receive recirculating memory cells. We assessed whether lymph nodes with follicular effector CD4 T cells in addition to recirculating memory CD4 T cells mount a more rapid secondary response than nodes that only contain recirculating memory cells. Also, the extent to which T cell frequency governs accelerated CD4 T cell recall responses was tested. For this, secondary antibody responses to a superantigen, where the frequency of responding T cells is not increased at the time of challenge, were compared with those to conventional protein antigens. With both types of antigens similar accelerated responses were elicited in the node draining the site of primary immunization and in the contralateral node, not previously exposed to antigen. Thus recirculating memory cells are fully capable of mounting accelerated secondary responses, without the assistance of CD4 effector T cells, and accelerated memory responses are not solely dependent on higher T cell frequencies. Accelerated memory CD4 T cell responses were also seen in B cell-deficient mice.
Resumo:
Some methadone maintenance treatment (MMT) programs prescribe inadequate daily methadone doses. Patients complain of withdrawal symptoms and continue illicit opioid use, yet practitioners are reluctant to increase doses above certain arbitrary thresholds. Serum methadone levels (SMLs) may guide practitioners dosing decisions, especially for those patients who have low SMLs despite higher methadone doses. Such variation is due in part to the complexities of methadone metabolism. The medication itself is a racemic (50:50) mixture of 2 enantiomers: an active "R" form and an essentially inactive "S" form. Methadone is metabolized primarily in the liver, by up to five cytochrome P450 isoforms, and individual differences in enzyme activity help explain wide ranges of active R-enantiomer concentrations in patients given identical doses of racemic methadone. Most clinical research studies have used methadone doses of less than 100 mg/day [d] and have not reported corresponding SMLs. New research suggests that doses ranging from 120 mg/d to more than 700 mg/d, with correspondingly higher SMLs, may be optimal for many patients. Each patient presents a unique clinical challenge, and there is no way of prescribing a single best methadone dose to achieve a specific blood level as a "gold standard" for all patients. Clinical signs and patient-reported symptoms of abstinence syndrome, and continuing illicit opioid use, are effective indicators of dose inadequacy. There does not appear to be a maximum daily dose limit when determining what is adequately "enough" methadone in MMT.
Resumo:
ABSTRACT Aspergillus fumigatus is one of the most prevalent airbone fungal pathogen and can cause severe fatal invasive aspergillosis in immunocompromised patients. Several antifungal agents are available to treat these infections but with limited success. These agents include polyenes (amphotericin B), echinocandins (caspofungin) and azoles, which constitute the most important class with itraconazole (ITC) and voriconazole as major active compounds. Azole-derived antifungal agents target the ergosterol biosynthesis pathway via the inhibition of the lanosterol 14α-demethylase (cyp51/ERG1 1), a cytochrome P450 responsible for the conversion of lanosterol to ergosterol, which is the main component of cell membrane in fungi. A. fumigatus is also found in the environment as a contaminant of rotting plant or present in composting of organic waste. Among antifungal agents used in the environment for crop protection, the class of azoles is also widely used with propiconazole or prochloraz as examples. However, other agents such as dicarboximide (iprodione), phenylamide (benalaxyl) or strobilurin (azoxystrobin) are also used. Emergence of clinical azole-resistant isolates has been described in several European countries. However the incidence of antifungal resistance has not been yet reported in details in Switzerland. In this study, the status of antifungal resistance was investigated on A. fumigatus isolates collected from Swiss hospitals and from different environmental sites and. tested for their susceptibility to several currently used antifungal agents. The data showed a low incidence of resistance for all tested agents among clinical and environmental isolates. Only two azole-resistant environmental isolates were detected and none among the clinical tested isolates. In general, A. fumigatus was susceptible to all antifungals tested in our study, except to azoxystrobin which was the less active agent against all isolates. Since mechanisms of antifungal resistance have been poorly investigated until now in A. fumigatus, this work was aimed 1) to identify A. fumigatus genes involved in antifungal resistance and 2) to test their involvement in the development of resistance in sampled isolates. Therefore, this work proposed to isolate A. fumigatus genes conferring resistance to a drug-hypersusceptible Saccharomyces cerevisiae strain due to a lack of multidrug transporter genes. Several genes were recovered including three distinct efflux transporters (atrF, atrH and mdrA) and a bZip transcription factor, yapA. The inactivation of each transporter in A. fumigatus indicated that the transporters were involved in the basal level of azole susceptibility. The inactivation of YapA led to a hypersusceptibility to H2O2, thus confirming the involvement of this gene in the oxidative stress response of A. fumigatus. The involvement of the abovementioned transporters genes and of other transporters genes identified by genome analysis in azole resistance was tested by probing their expression in some ITC-resistant isolates. Even if upregulation of some transporters genes was observed in some investigated isolates, the correlation between azole resistance and expression levels of all these transporters genes could not be clearly established for all tested isolates. Given these results, the present work addressed 1) alteration in the expression of cyp51A encoding for the azole target enzyme, and 2) mutation(s) in the cyp51A sequence as potential mechanisms of azote resistance in A. . However, overexpression of cyp51A in the investigated isolates was not linked with azote resistance. Since it was reported that mutation(s) in cyp51A were participating in azote resistance in A. fumigatus, a functional complementation of cyp51A cDNAs from ITC-resistant A. fumigatus strains in S. cerevisiae ergl 1 Δ mutant strain was attempted. Expression in S. cerevisiae allowed the testing of these cDNAs with regards to their functionality and involvement in resistance to specific azote compounds. We could demonstrate that Cyp51A protein with a G54E or M220K mutations conferred resistance to specific azoles in S. cerevisiae, therefore suggesting that these mutations were important for the development of azote resistance in A. fumigatus. In conclusion, this work showed a correlation between ITC resistance and mechanisms involving overexpression of transporters and cyp51A mutations in A. fumigatus isolates. However, azole resistance of some isolates has not been solved and thus it will be necessary to approach the study of resistance mechanisms in this fungal species using alternative methodologies. RESUME Aspergillus fumigatus est un champignon opportuniste répandu et est la cause d'aspergilloses invasives le plus souvent fatales chez des patients immunodéprimés. Plusieurs antifongiques sont disponibles afin de traiter ces infections, cependant avec un succès limité. Ces agents incluent les polyènes (amphotericin B), les échinocandines (caspofungin) et les azoles, qui représentent la plus importante classe d'antifongiques avec l'itraconazole (ITC) et le voriconazole comme principaux agents actifs. Les dérivés azolés ciblent la voie de biosynthèse de l'ergostérol via l'inhibition de la lanostérol 14α-demethylase (cyp51/ERG11), un cytochrome P450 impliqué dans la conversion du lanostérol en ergostérol, qui est un composant important de la membrane chez les champignons. A. fumigatus est également répandu dans l'environnement. Parmi les antifongiques employés en agriculture afin de protéger les cultures, les azoles sont aussi largement utilisés. Cependant, d'autres agents tels que les dicarboximides (iprodione), les phenylamides (benalaxyl) et les strobilurines (azoxystrobin) peuvent être également utilisés. L'émergence de souches cliniques résistantes aux azoles a été décrite dans différents pays européens. Cependant, l'incidence d'une telle résistance aux azoles n'a pas encore été reportée en détails en Suisse. Dans ce travail, l'émergence de la résistance aux antifongiques a été étudiée par analyse de souches d'A. fumigatus provenant de milieux hospitaliers en Suisse et de différents sites et leur susceptibilité testée envers plusieurs antifongiques couramment utilisés. Les données obtenues ont montré une faible incidence de la résistance parmi les souches cliniques et environnementales pour les agents testés. Seulement deux souches environnementales résistantes aux azoles ont été détectées et aucune parmi les souches cliniques. Les mécanismes de résistance aux antifongiques ayant été très peu étudiés jusqu'à présent chez A. fumigatus , ce travail a eu aussi pour but 1) d'identifier les gènes d' A. fumigatus impliqués dans la résistance aux antifongiques et 2) de tester leur implication dans la résistance de certaines souches. Ainsi, il a été proposé d'isoler les gènes d' A. fumigatus pouvant conférer une résistance aux antifongiques à une souche de Saccharomyces cerevisiae hypersensible aux antifongiques. Trois transporteurs à efflux (atrF, atrH et mdrA) et un facteur de transcription appartenant à la famille des bZip (YapA) ont ainsi été isolés. L'inactivation, dans une souche d'A. fumigatus, de chacun des ces transporteurs a permis de mettre en évidence leur implication dans la susceptibilité d'A. fumigatus aux antifongiques. L'inactivation de YapA a engendré une hypersusceptibilité à l' H2O2, confirmant ainsi le rôle de ce gène dans la réponse au stress oxydatif chez A . fumigatus. La participation dans la résistance aux antifongiques des gènes codant pour des transporteurs ainsi que d'autres gènes identifiés par analyse du génome a été déterminée en testant leur niveau d'expression dans des souches résistantes à l'ITC. Bien qu'une surexpression de transporteurs ait été observée dans certaines souches, une corrélation entre la résistance à l'ITC et les niveaux d'expression de ces transporteurs n'a pu être clairement établie. Ce présent travail s'est donc porté sur l'étude de 2 autres mécanismes potentiellement impliqués dans la résistance aux azoles : 1) la surexpression de cyp51A codant pour l'enzyme cible et 2) des mutations dans cyp51A. Cependant, la surexpression de cyp51A dans les souches étudiées n'a pas été constatée. L'effet des mutations de cyp51A dans la résistance aux azoles a été testée par complémentation fonctionnelle d'une souche S. cerevisiae déletée dans son gène ERG11. L'expression de ces gènes chez S. cerevisiae a permis de démontrer que les protéines Cyp51Ap contenant une mutation G54E ou M220K pouvaient conférer une résistance spécifique à certains azoles, ainsi suggérant que ces mutations pourraient être importantes dans le développement d'une résistance aux azoles chez A. fumigatus. En conclusion, ce travail a permis de mettre en évidence, dans des souches d'A. fumigatus , une corrélation entre leur résistance à l' ITC et les mécanismes impliquant une surexpression de transporteurs et des mutations dans cyp51A. Cependant, ces mécanismes n'ont pu expliquer la résistance aux azoles de certaines souches et c'est pourquoi de nouvelles approches doivent être envisagées afin d'étudier ces mécanismes.
Resumo:
Clozapine (CLO), an atypical antipsychotic, depends mainly on cytochrome P450 1A2 (CYP1A2) for its metabolic clearance. Four patients treated with CLO, who were smokers, were nonresponders and had low plasma levels while receiving usual doses. Their plasma levels to dose ratios of CLO (median; range, 0.34; 0.22 to 0.40 ng x day/mL x mg) were significantly lower than ratios calculated from another study with 29 patients (0.75; 0.22 to 2.83 ng x day/mL x mg; P < 0.01). These patients were confirmed as being CYP1A2 ultrarapid metabolizers by the caffeine phenotyping test (median systemic caffeine plasma clearance; range, 3.85; 3.33 to 4.17 mL/min/kg) when compared with previous studies (0.3 to 3.33 mL/min/kg). The sequencing of the entire CYP1A2 gene from genomic DNA of these patients suggests that the -164C > A mutation (CYP1A2*1F) in intron 1, which confers a high inducibility of CYP1A2 in smokers, is the most likely explanation for their ultrarapid CYP1A2 activity. A marked (2 patients) or a moderate (2 patients) improvement of the clinical state of the patients occurred after the increase of CLO blood levels above the therapeutic threshold by the increase of CLO doses to very high values (ie, up to 1400 mg/d) or by the introduction of fluvoxamine, a potent CYP1A2 inhibitor, at low dosage (50 to 100 mg/d). Due to the high frequency of smokers among patients with schizophrenia and to the high frequency of the -164C > A polymorphism, CYP1A2 genotyping could have important clinical implications for the treatment of patients with CLO.
Resumo:
With the aging population and its rapidly increasing prevalence, dementia has become an important public health concern in developed and developing countries. To date, the pharmacological treatment is symptomatic and based on the observed neurotransmitter disturbances. The four most commonly used drugs are donepezil, galantamine, rivastigmine and memantine. Donepezil, galantamine and rivastigmine are acetylcholinesterase inhibitors with different pharmacodynamic and pharmacokinetic profiles. Donepezil inhibits selectively the acetylcholinesterase and has a long elimination half-life (t½) of 70 h. Galantamine is also a selective acetylcholinesterase inhibitor, but also modulates presynaptic nicotinic receptors. It has a t½ of 6-8 h. Donepezil and galantamine are mainly metabolised by cytochrome P450 (CYP) 2D6 and CYP3A4 in the liver. Rivastigmine is a so-called 'pseudo-irreversible' inhibitor of acetylcholinesterase and butyrylcholinesterase. The t½ of the drug is very short (1-2 h), but the duration of action is longer as the enzymes are blocked for around 8.5 and 3.5 h, respectively. Rivastigmine is metabolised by esterases in liver and intestine. Memantine is a non-competitive low-affinity antagonist of the NMDA receptor with a t½ of 70 h. Its major route of elimination is unchanged via the kidneys. Addressing the issue of inter-patient variability in treatment response might be of special importance for the vulnerable population taking anti-dementia drugs. Pharmacogenetic considerations might help to avoid multiple medication changes due to non-response and/or adverse events. Some pharmacogenetic studies conducted on donepezil and galantamine reported an influence of the CYP2D6 genotype on the pharmacokinetics of the drugs and/or on the response to treatment. Moreover, polymorphisms in genes of the cholinergic markers acetylcholinesterase, butyrylcholinesterase, choline acetyltransferase and paraoxonase were found to be associated with better clinical response to acetylcholinesterase inhibitors. However, confirmation studies in larger populations are necessary to establish evidence of which subgroups of patients will most likely benefit from anti-dementia drugs. The aim of this review is to summarize the pharmacodynamics and pharmacokinetics of the four commonly used anti-dementia drugs and to give an overview on the current knowledge of pharmacogenetics in this field.
Resumo:
BACKGROUND:: The frequently prescribed antidementia drug galantamine is extensively metabolized by the enzymes cytochrome P450 (CYP) 2D6 and CYP3A and is a substrate of the P-glycoprotein. We aimed to study the relationship between genetic variants influencing the activity of these enzymes and transporters with galantamine steady state plasma concentrations. METHODS:: In this naturalistic cross-sectional study, 27 older patients treated with galantamine were included. The patients were genotyped for common polymorphisms in CYP2D6, CYP3A4/5, POR, and ABCB1, and galantamine steady state plasma concentrations were determined. RESULTS:: The CYP2D6 genotype seemed to be an important determinant of galantamine pharmacokinetics, with CYP2D6 poor metabolizers presenting 45% and 61% higher dose-adjusted galantamine plasma concentrations than heterozygous and homozygous CYP2D6 extensive metabolizers (median 2.9 versus 2.0 ng/mL·mg, P = 0.025, and 1.8 ng/mL·mg, P = 0.004), respectively. CONCLUSIONS:: The CYP2D6 genotype significantly influenced galantamine plasma concentrations. The influence of CYP2D6 polymorphisms on the treatment efficacy and tolerability should be further investigated.
Resumo:
Therapeutic drug monitoring (TDM) can be defined as the measurement of drug in biological samples to individualise treatment by adapting drug dose to improve efficacy and/or reduce toxicity. The cytotoxic drugs are characterised by steep dose-response relationships and narrow therapeutic windows. Inter-individual pharmacokinetic (PK) variability is often substantial. There are, however, a multitude of reasons why TDM has never been fully implemented in daily oncology practice. These include difficulties in establishing appropriate concentration target, common use of combination chemotherapies and the paucity of published data from pharmacological trials. The situation is different with targeted therapies. The large interindividual PK variability is influenced by the pharmacogenetic background of the patient (e.g. cytochrome P450 and ABC transporters polymorphisms), patient characteristics such as adherence to treatment and environmental factors (drug-drug interactions). Retrospective studies have shown that targeted drug exposure correlates with treatment response in various cancers. Evidence for imatinib currently exists, others are emerging for compounds including nilotinib, dasatinib, erlotinib, sunitinib, sorafenib and mammalian target of rapamycin (mTOR) inhibitors. Applications for TDM during oral targeted therapies may best be reserved for particular situations including lack of therapeutic response, severe or unexpected toxicities, anticipated drug-drug interactions and concerns over adherence treatment. There are still few data with monoclonal antibodies (mAbs) in favour of TDM approaches, even if data showed encouraging results with rituximab and cetuximab. TDM of mAbs is not yet supported by scientific evidence. Considerable effort should be made for targeted therapies to better define concentration-effect relationships and to perform comparative randomised trials of classic dosing versus pharmacokinetically-guided adaptive dosing.
Resumo:
We sequenced 1077 bp of the mitochondrial cytochrome b gene and 511 bp of the nuclear Apolipoprotein B gene in bicoloured shrew (Crocidura leucodon, Soricidae) populations ranging from France to Georgia. The aims of the study were to identify the main genetic clades within this species and the influence of Pleistocene climatic variations on the respective clades. The mitochondrial analyses revealed a European clade distributed from France eastwards to north-western Turkey and a Near East clade distributed from Georgia to Romania; the two clades separated during the Middle Pleistocene. We clearly identified a population expansion after a bottleneck for the European clade based on mitochondrial and nuclear sequencing data; this expansion was not observed for the eastern clade. We hypothesize that the western population was confined to a small Italo-Balkanic refugium, whereas the eastern population subsisted in several refugia along the southern coast of the Black Sea.
Resumo:
The PAR-domain basic leucine zipper (PAR bZip) transcription factors DBP, TEF, and HLF accumulate in a highly circadian manner in several peripheral tissues, including liver and kidney. Mice devoid of all three of these proteins are born at expected Mendelian ratios, but are epilepsy prone, age at an accelerated rate, and die prematurely. In the hope of identifying PAR bZip target genes whose altered expression might contribute to the high morbidity and mortality of PAR bZip triple knockout mice, we compared the liver and kidney transcriptomes of these animals to those of wild-type or heterozygous mutant mice. These experiments revealed that PAR bZip proteins control the expression of many enzymes and regulators involved in detoxification and drug metabolism, such as cytochrome P450 enzymes, carboxylesterases, and constitutive androstane receptor (CAR). Indeed, PAR bZip triple knockout mice are hypersensitive to xenobiotic compounds, and the deficiency in detoxification may contribute to their early aging.
Resumo:
Epoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases. However, despite their pleiotropic effects on cells, little is known about the role of these epoxyeicosanoids in cancer. Here, using genetic and pharmacological manipulation of endogenous EET levels, we demonstrate that EETs are critical for primary tumor growth and metastasis in a variety of mouse models of cancer. Remarkably, we found that EETs stimulated extensive multiorgan metastasis and escape from tumor dormancy in several tumor models. This systemic metastasis was not caused by excessive primary tumor growth but depended on endothelium-derived EETs at the site of metastasis. Administration of synthetic EETs recapitulated these results, while EET antagonists suppressed tumor growth and metastasis, demonstrating in vivo that pharmacological modulation of EETs can affect cancer growth. Furthermore, inhibitors of soluble epoxide hydrolase (sEH), the enzyme that metabolizes EETs, elevated endogenous EET levels and promoted primary tumor growth and metastasis. Thus, our data indicate a central role for EETs in tumorigenesis, offering a mechanistic link between lipid signaling and cancer and emphasizing the critical importance of considering possible effects of EET-modulating drugs on cancer.
Resumo:
Avian malaria studies have taken a prominent place in different aspects of evolutionary ecology. Despite a recent interest in the role of vectors within the complex interaction system of the malaria parasite, they have largely been ignored in most epidemiological studies. Epidemiology of the disease is however strongly related to the vector's ecology and behaviour, and there is a need for basic investigations to obtain a better picture of the natural associations between Plasmodium lineages, vector species and bird hosts. The aim of the present study was to identify the mosquito species involved in the transmission of the haemosporidian parasites Plasmodium spp. in two wild populations of breeding great tits (Parus major) in western Switzerland. Additionally, we compared Plasmodium lineages, based on mitochondrial DNA cytochrome b sequences, between the vertebrate and dipteran hosts, and evaluated the prevalence of the parasite in the mosquito populations. Plasmodium spp. were detected in Culex pipiens only, with an overall 6.6% prevalence. Among the six cytochrome b lineages of Plasmodium identified in the mosquitoes, three were also present in great tits. The results provide evidence for the first time that C. pipiens can act as a natural vector of avian malaria in Europe and yield baseline data for future research on the epidemiology of avian malaria in European countries.
Resumo:
Cyclosporine is a substrate of cytochrome P450 (CYP) 3A and of the transporter ABCB1, for which polymorphisms have been described. In particular, CYP3A5 *3/*3 genotype results in the absence of CYP3A5 activity, whereas CYP3A7 *1/*1C genotype results in high CYP3A7 expression in adults. Log-transformed dose-adjusted cyclosporine trough concentration and daily dose per weight were compared 1, 3, 6, and 12 months after transplantation between CYP3A and ABCB1 genotypes in 73 renal (n = 64) or lung (n = 9) transplant recipients. CYP3A5 expressors (*1/*3 genotype; n = 8-10) presented significantly lower dose-adjusted cyclosporine trough concentrations (P < 0.05) and required significantly higher daily doses per weight (P < 0.01) than the nonexpressors (*3/*3 genotype; n = 55-59) 1, 3, 6, and 12 months after transplantation. In addition, 7 days after transplantation, more CYP3A5 expressors had uncorrected trough cyclosporine concentration below the target concentration of 200 ng/mL than the nonexpressors (odds ratio = 7.2; 95% confidence interval = 1.4-37.3; P = 0.009). CYP3A4 rs4646437C>T influenced cyclosporine kinetics, the T carriers requiring higher cyclosporine dose. CYP3A7*1C carriers required a 1.4-fold to 1.6-fold higher cyclosporine daily dose during the first year after transplantation (P < 0.05). In conclusion, CYP3A4, CYP3A5, and CYP3A7 polymorphisms affect cyclosporine metabolism, and therefore, their genotyping could be useful, in association with therapeutic drug monitoring, to prospectively optimize cyclosporine prescription in transplant recipients. The administration of a CYP3A genotype-dependent cyclosporine starting dose should therefore be tested prospectively in a randomized controlled clinical trial to assess whether it leads to an improvement of the patients outcome after transplantation, with adequate immunosuppression and decreased toxicity.