252 resultados para CHROMATIN IMMUNOPRECIPITATION
Resumo:
Chromatin remodeling and histone modification are essential for eukaryotic transcription regulation, but little is known about chromatin-modifying activities acting on RNA polymerase III (Pol III)-transcribed genes. The human U6 small nuclear RNA promoter, located 5' of the transcription start site, consists of a core region directing basal transcription and an activating region that recruits the transcription factors Oct-1 and Staf (ZNF143). Oct-1 activates transcription in part by helping recruit core binding factors, but nothing is known about the mechanisms of transcription activation by Staf. We show that Staf activates U6 transcription from a preassembled chromatin template in vitro and associates with several proteins linked to chromatin modification, among them chromodomain-helicase-DNA binding protein 8 (CHD8). CHD8 binds to histone H3 di- and trimethylated on lysine 4. It resides on the human U6 promoter as well as the mRNA IRF3 promoter in vivo and contributes to efficient transcription from both these promoters. Thus, Pol III transcription from type 3 promoters uses some of the same factors used for chromatin remodeling at Pol II promoters.
Resumo:
Early pregnancy and multiparity are known to reduce the risk of women to develop breast cancer at menopause. Based on the knowledge that the differentiation of the breast induced by the hormones of pregnancy plays a major role in this protection, this work was performed with the purpose of identifying what differentiation-associated molecular changes persist in the breast until menopause. Core needle biopsies (CNB) obtained from the breast of 42 nulliparous (NP) and 71 parous (P) postmenopausal women were analyzed in morphology, immunocytochemistry and gene expression. Whereas in the NP breast, nuclei of epithelial cells were large and euchromatic, in the P breast they were small and hyperchromatic, showing strong methylation of histone 3 at lysine 9 and 27. Transcriptomic analysis performed using Affymetrix HG_U133 oligonucleotide arrays revealed that in CNB of the P breast, there were 267 upregulated probesets that comprised genes controlling chromatin organization, transcription regulation, splicing machinery, mRNA processing and noncoding elements including XIST. We concluded that the differentiation process induced by pregnancy is centered in chromatin remodeling and in the mRNA processing reactome, both of which emerge as important regulatory pathways. These are indicative of a safeguard step that maintains the fidelity of the transcription process, becoming the ultimate mechanism mediating the protection of the breast conferred by full-term pregnancy.
Resumo:
BACKGROUND: Structural mutations (SMs) play a major role in cancer development. In some cancers, such as breast and ovarian, DNA double-strand breaks (DSBs) occur more frequently in transcribed regions, while in other cancer types such as prostate, there is a consistent depletion of breakpoints in transcribed regions. Despite such regularity, little is understood about the mechanisms driving these effects. A few works have suggested that protein binding may be relevant, e.g. in studies of androgen receptor binding and active chromatin in specific cell types. We hypothesized that this behavior might be general, i.e. that correlation between protein-DNA binding (and open chromatin) and breakpoint locations is common across divergent cancers. RESULTS: We investigated this hypothesis by comprehensively analyzing the relationship among 457 ENCODE protein binding ChIP-seq experiments, 125 DnaseI and 24 FAIRE experiments, and 14,600 SMs from 8 diverse cancer datasets covering 147 samples. In most cancers, including breast and ovarian, we found enrichment of protein binding and open chromatin in the vicinity of SM breakpoints at distances up to 200 kb. Furthermore, for all cancer types we observed an enhanced enrichment in regions distant from genes when compared to regions proximal to genes, suggesting that the SM-induction mechanism is independent from the bias of DSBs to occur near transcribed regions. We also observed a stronger effect for sites with more than one protein bound. CONCLUSIONS: Protein binding and open chromatin state are associated with nearby SM breakpoints in many cancer datasets. These observations suggest a consistent mechanism underlying SM locations across different cancers.
Resumo:
The cytokine macrophage migration inhibitory factor plays a central role in inflammation, cell proliferation and tumorigenesis. Moreover, macrophage migration inhibitory factor levels correlate with tumor aggressiveness and metastatic potential. Histone deacetylase inhibitors are potent antitumor agents recently introduced in the clinic. Therefore, we hypothesized that macrophage migration inhibitory factor would represent a target of histone deacetylase inhibitors. Confirming our hypothesis, we report that histone deacetylase inhibitors of various chemical classes strongly inhibited macrophage migration inhibitory factor expression in a broad range of cell lines, in primary cells and in vivo. Nuclear run on, transient transfection with macrophage migration inhibitory factor promoter reporter constructs and transduction with macrophage migration inhibitory factor expressing adenovirus demonstrated that trichostatin A (a prototypical histone deacetylase inhibitor) inhibited endogenous, but not episomal, MIF gene transcription. Interestingly, trichostatin A induced a local and specific deacetylation of macrophage migration inhibitory factor promoter-associated H3 and H4 histones which did not affect chromatin accessibility but was associated with an impaired recruitment of RNA polymerase II and Sp1 and CREB transcription factors required for basal MIF gene transcription. Altogether, this study describes a new molecular mechanism by which histone deacetylase inhibitors inhibit MIF gene expression, and suggests that macrophage migration inhibitory factor inhibition by histone deacetylase inhibitors may contribute to the antitumorigenic effects of histone deacetylase inhibitors.
Resumo:
Copy number variants (CNVs) influence the expression of genes that map not only within the rearrangement, but also to its flanks. To assess the possible mechanism(s) underlying this "neighboring effect", we compared intrachromosomal interactions and histone modifications in cell lines of patients affected by genomic disorders and control individuals. Using chromosome conformation capture (4C-seq), we observed that a set of genes flanking the Williams-Beuren Syndrome critical region (WBSCR) were often looping together. The newly identified interacting genes include AUTS2, mutations of which are associated with autism and intellectual disabilities. Deletion of the WBSCR disrupts the expression of this group of flanking genes, as well as long-range interactions between them and the rearranged interval. We also pinpointed concomitant changes in histone modifications between samples. We conclude that large genomic rearrangements can lead to chromatin conformation changes that extend far away from the structural variant, thereby possibly modulating expression globally and modifying the phenotype. GEO SERIES ACCESSION NUMBER: GSE33784, GSE33867.
Resumo:
We investigated the functional role of the Leishmania histone H1 and demonstrate for the first time that addition of histone H1 has a strong effect on microccocal digestion, chromatin condensation of parasite nuclei and that its overexpression can modulate parasite infectivity in vivo.
Resumo:
Integrating viral vectors hold great promise as gene transfer vectors for gene therapy purposes because they allow maintaining long-term expression of the therapeutic transgene throughout cell divisions. However, many issues related to integration of the provirus remain as a substantial risk for patients. The use of chromatin insulators has been proposed as a possible solution to problems raised by the integration of the vector.
Resumo:
Eukaryotic transcription is tightly regulated by transcriptional regulatory elements, even though these elements may be located far away from their target genes. It is now widely recognized that these regulatory elements can be brought in close proximity through the formation of chromatin loops, and that these loops are crucial for transcriptional regulation of their target genes. The chromosome conformation capture (3C) technique presents a snapshot of long-range interactions, by fixing physically interacting elements with formaldehyde, digestion of the DNA, and ligation to obtain a library of unique ligation products. Recently, several large-scale modifications to the 3C technique have been presented. Here, we describe chromosome conformation capture sequencing (4C-seq), a high-throughput version of the 3C technique that combines the 3C-on-chip (4C) protocol with next-generation Illumina sequencing. The method is presented for use in mammalian cell lines, but can be adapted to use in mammalian tissues and any other eukaryotic genome.
Resumo:
The liver-specific vitellogenin B1 promoter is efficiently activated by estrogen within a nucleosomal environment after microinjection into Xenopus laevis oocytes, consistent with the hypothesis that significant nucleosome remodeling over this promoter is not a prerequisite for the activation by the estrogen receptor (ERalpha). This observation lead us to investigate determinants other than ERalpha of chromatin structure and transcriptional activation of the vitellogenin B1 promoter in this system and in vitro. We find that the liver-enriched transcription factor HNF3 has an important organizational role for chromatin structure as demonstrated by DNase I-hypersensitive site mapping. Both HNF3 and the estrogen receptor activate transcription synergistically and are able to interact with chromatin reconstituted in vitro with three positioned nucleosomes. We propose that HNF3 is the cellular determinant which establishes a promoter environment favorable to a rapid transcriptional activation by the estrogen receptor.
Resumo:
While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells. We find widespread DNA hypomethylation in the cancer cell, primarily at partially methylated domains (PMDs) in normal breast cells. Unexpectedly, genes within these regions are largely silenced in cancer cells. The loss of DNA methylation in these regions is accompanied by formation of repressive chromatin, with a significant fraction displaying allelic DNA methylation where one allele is DNA methylated while the other allele is occupied by histone modifications H3K9me3 or H3K27me3. Our results show a mutually exclusive relationship between DNA methylation and H3K9me3 or H3K27me3. These results suggest that global DNA hypomethylation in breast cancer is tightly linked to the formation of repressive chromatin domains and gene silencing, thus identifying a potential epigenetic pathway for gene regulation in cancer cells.
Resumo:
Le sarcome d'Ewing (SE) est la 2ème tumeur des os la plus fréquente chez les enfants, et le pronostic est sombre au stade métastatique. La pathogenèse du SE repose sur une translocation, provocant la fusion du domaine activateur du facteur de transcription EWS, avec la partie liant l'ADN de la protéine FLI-1. Les cellules souches cancéreuses (CSC) sont supposées être les moteurs de la croissance tumorale, et représente de ce fait des cibles thérapeutiques préférentielles. Dans ce travail nous nous sommes efforcés de comprendre, ainsi que de cibler les mécanismes liés à l'émergence des CSC dans le sarcome d'Ewing. La formation des CSC du ES est liée à un défaut de maturation des miRNAs provoqué par une sous-expression d'un gène, TARBP2, dans les CSC. Ce défaut de maturation peut être corrigé par un traitement des cellules avec de l'enoxacine, une fluoroquinolone utilisée pour traiter les infections urinaires. L'enoxacine seule n'étant pas suffisante pour éradiquer les tumeurs in vivo, nous avons testé la combinaison d'une thérapie ciblée sur les CSC avec une chimiothérapie classique, la doxorubicine, ciblant les cellules différentiées. In vitro l'enoxacine induit l'apoptose dans les CCS sans affecter les cellules différentiées, alors que à l'inverse, la doxorubicine n'affecte que les cellules de la « masse » tumorale. In vivo la combinaison de ces deux drogues inhibe la croissance de tumeurs provenant de cellules primaires xenotranplantées et éradique les CSCs. Nos résultats mettent en lumière une nouvelle approche thérapeutique directement applicable pour le sarcome d'Ewing, et pourraient ainsi rapidement déboucher sur des essais cliniques. Dans la deuxième partie de ce travail nous avons essayé de comprendre comment EWS-FLI1, la protéine de fusion issue de la translocation chromosomique du sarcome d'Ewing conduit à la génération des CSC. Pour cela nous avons effectué des ChIPseq (immunoprecipitation de la chromatine suivi de séquençage) pour EWS-FLI1 ainsi que pour certaines modifications histoniques. -- Ewing sarcoma family tumors (ESFT) are the second most frequent bone tumors in children and have a high rate of recurrence when metastatic at presentation. The pathogenesis of Ewing sarcoma is underlayed by a translocation, leading to the fusion of the trans-activating domain of EWS with the FLU DNA binding domain. Cancer stem cells (CSCs) are thought to be the driving force of tumor growth. In this work we focused on understanding the mechanisms underlying ESFT CSC emergence as well as defining targeted therapeutic strategies. Emergence of CSCs in ESFT has been shown to arise from a defect in TARBP2-dependent microRNA maturation, which can be corrected by exposure to the fluoroquinolone enoxacin. As enoxacin alone is not sufficient to reverse tumor growth in vivo, we assessed the effect of combining a drug that abrogates CSC properties with doxorubicin, a standard-of-care therapy in ESFT. Primary ESFT CSCs and bulk tumor cells were treated with different concentration of drugs and displayed divergent responses to doxorubicin and enoxacin. Doxorubicin, which targets the tumor bulk, displayed toxicity toward primary adherent ESFT cells in culture but not to CSC-enriched ESFT spheres. Conversely, enoxacin induced apoptosis but only in ESFT spheres and specifically on the CD133+ population. In combination, the two drugs markedly depleted CSC and strongly reduced primary growth in xenograft assays of two primary ESFT. Our results identify a potentially attractive therapeutic strategy for ESFT that combines mechanism-based targeting of CSC using a low toxicity antibiotic with a standard-of-care cytotoxic drug, offering immediate applications for clinical evaluation. In the second part of this work we performed chromatin immunopercipitation on CSCs and bulk cells for EWS-FLI1 binding as well as some chromatin modifications, and concluded that EWS-FLI1 shows cell context dependent binding.
Resumo:
Chromatin state variation at gene regulatory elements is abundant across individuals, yet we understand little about the genetic basis of this variability. Here, we profiled several histone modifications, the transcription factor (TF) PU.1, RNA polymerase II, and gene expression in lymphoblastoid cell lines from 47 whole-genome sequenced individuals. We observed that distinct cis-regulatory elements exhibit coordinated chromatin variation across individuals in the form of variable chromatin modules (VCMs) at sub-Mb scale. VCMs were associated with thousands of genes and preferentially cluster within chromosomal contact domains. We mapped strong proximal and weak, yet more ubiquitous, distal-acting chromatin quantitative trait loci (cQTL) that frequently explain this variation. cQTLs were associated with molecular activity at clusters of cis-regulatory elements and mapped preferentially within TF-bound regions. We propose that local, sequence-independent chromatin variation emerges as a result of genetic perturbations in cooperative interactions between cis-regulatory elements that are located within the same genomic domain.
Resumo:
Interferon-gamma (IFN-gamma) modulates the expression of Class II major histocompatibility antigens (MHC), thus providing a potential regulatory mechanism for local immune reactivity in the context of MHC-restricted antigen presentation. Within the central nervous system (CNS), the expression of MHC Class II antigens has been demonstrated on human reactive astrocytes and glioma cells. In order to investigate the modulation of HLA-DR on normal astrocytes, two cell lines were grown from a 20-week-old fetal brain. In situ none of the fetal brain cells expressed HLA-DR as determined by immunohistology on frozen tissue sections. The two cell lines, FB I and FB II, expressed GFAP indicating their astrocytic origin. FB I was HLA-DR negative at the first tissue culture passages, but could be induced to express HLA-DR when treated with 500 U/ml IFN-gamma. FB II was spontaneously HLA-DR positive in the early passages, lost the expression of this antigen after 11 passages and could also be induced to express HLA-DR by IFN-gamma. The induction of HLA-DR expression was demonstrated both by a binding RIA and by immunoprecipitation using a monoclonal antibody (MAB) directed against a monomorphic determinant of HLA-DR. The HLA-DR alloantigens were determined on FB II cells after IFN-gamma treatment, by immunofluorescence and by cytotoxicity assays, and were shown to be DR4, DR6, Drw52, DRw53 and DQwl. These results show that human fetal astrocytes can be induced to express HLA-DR by IFN-gamma in vitro and support the concept that astrocytes may function as antigen-presenting cells.
Resumo:
In Saccharomyces cerevisiae, TBF1, an essential gene, influences telomere function but also has other roles in the global regulation of transcription. We have identified a new member of the tbf1 gene family in the mammalian pathogen Pneumocystis carinii. We demonstrate by transspecies complementation that its ectopic expression can provide the essential functions of Schizosaccharomyces pombe tbf1 but that there is no rescue between fission and budding yeast orthologues. Our findings indicate that an essential function of this family of proteins has diverged in the budding and fission yeasts and suggest that effects on telomere length or structure are not the primary cause of inviability in S. pombe tbf1 null strains.