156 resultados para Biological adhesion
The hematology laboratory in blood doping (bd): 2014 update on the athlete biological passport (APB)
Resumo:
Introduction: Blood doping (BD) is the use of Erythropoietic Stimulating Agents (ESAs) and/or transfusion to increase aerobic performance in athletes. Direct toxicologic techniques are insufficient to unmask sophisticated doping protocols. The Hematological module of the ABP (World Anti-Doping Agency), associates decision support technology and expert assessment to indirectly detect BD hematological effects. Methods: The ABP module is based on blood parameters, under strict pre-analytical and analytical rules for collection, storage and transport at 2-12°C, internal and external QC. Accuracy, reproducibility and interlaboratory harmonization fulfill forensic standard. Blood samples are collected in competition and out-ofcompetition. Primary parameters for longitudinal monitoring are: - hemoglobin (HGB); - reticulocyte percentage (RET); - OFF score, indicator of suppressed erythropoiesis, calculated as [HGB(g/L) * 60-√RET%]. Statistical calculation predicts individual expected limits by probabilistic inference. Secondary parameters are RBC, HCT, MCHC-MCH-MCV-RDW-IFR. ABP profiles flagged as atypical are review by experts in hematology, pharmacology, sports medicine or physiology, and classified as: - normal - suspect (to target) - likely due to BD - likely due to pathology. Results: Thousands of athletes worldwide are currently monitored. Since 2010, at least 35 athletes have been sanctioned and others are prosecuted on the sole basis of abnormal ABP, with a 240% increase of positivity to direct tests for ESA, thanks to improved targeting of suspicious athletes (WADA data). Specific doping scenarios have been identified by the Experts (Table and Figure). Figure. Typical HGB and RET profiles in two highly suspicious athletes. A. Sample 2: simultaneous increases in HGB and RET (likely ESA stimulation) in a male. B. Samples 3, 6 and 7: "OFF" picture, with high HGB and low RET in a female. Sample 10: normal HGB and increased RET (ESA or blood withdrawal). Conclusions: ABP is a powerful tool for indirect doping detection, based on the recognition of specific, unphysiological changes triggered by blood doping. The effect of factors of heterogeneity, such as sex and altitude, must also be considered. Schumacher YO, et al. Drug Test Anal 2012, 4:846-853. Sottas PE, et al. Clin Chem 2011, 57:969-976.
Resumo:
The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of visual motion. Based on these data and evidence from neurophysiological and neuroimaging studies we discuss the neural mechanisms likely to underlie this effect.
Resumo:
The classical T cell cytokine macrophage migration inhibitory factor (MIF) has reemerged recently as a critical mediator of the host immune and stress response. MIF has been found to be a mediator of several diseases including gram-negative septic shock and delayed-type hypersensitivity reactions. Its immunological functions include the modulation of the host macrophage and T and B cell response. In contrast to other known cytokines, MIF production is induced rather than suppressed by glucocorticoids, and MIF has been found to override the immunosuppressive effects of glucocorticoids. Recently, elucidation of the three-dimensional structure of MIF revealed that MIF has a novel, unique cytokine structure. Here the biological role of MIF is reviewed in view of its distinct immunological and structural properties.
Resumo:
Doxorubicin is an antineoplasic agent active against sarcoma pulmonary metastasis, but its clinical use is hampered by its myelotoxicity and its cumulative cardiotoxicity, when administered systemically. This limitation may be circumvented using the isolated lung perfusion (ILP) approach, wherein a therapeutic agent is infused locoregionally after vascular isolation of the lung. The influence of the mode of infusion (anterograde (AG): through the pulmonary artery (PA); retrograde (RG): through the pulmonary vein (PV)) on doxorubicin pharmacokinetics and lung distribution was unknown. Therefore, a simple, rapid and sensitive high-performance liquid chromatography method has been developed to quantify doxorubicin in four different biological matrices (infusion effluent, serum, tissues with low or high levels of doxorubicin). The related compound daunorubicin was used as internal standard (I.S.). Following a single-step protein precipitation of 500 microl samples with 250 microl acetone and 50 microl zinc sulfate 70% aqueous solution, the obtained supernatant was evaporated to dryness at 60 degrees C for exactly 45 min under a stream of nitrogen and the solid residue was solubilized in 200 microl of purified water. A 100 microl-volume was subjected to HPLC analysis onto a Nucleosil 100-5 microm C18 AB column equipped with a guard column (Nucleosil 100-5 microm C(6)H(5) (phenyl) end-capped) using a gradient elution of acetonitrile and 1-heptanesulfonic acid 0.2% pH 4: 15/85 at 0 min-->50/50 at 20 min-->100/0 at 22 min-->15/85 at 24 min-->15/85 at 26 min, delivered at 1 ml/min. The analytes were detected by fluorescence detection with excitation and emission wavelength set at 480 and 550 nm, respectively. The calibration curves were linear over the range of 2-1000 ng/ml for effluent and plasma matrices, and 0.1 microg/g-750 microg/g for tissues matrices. The method is precise with inter-day and intra-day relative standard deviation within 0.5 and 6.7% and accurate with inter-day and intra-day deviations between -5.4 and +7.7%. The in vitro stability in all matrices and in processed samples has been studied at -80 degrees C for 1 month, and at 4 degrees C for 48 h, respectively. During initial studies, heparin used as anticoagulant was found to profoundly influence the measurements of doxorubicin in effluents collected from animals under ILP. Moreover, the strong matrix effect observed with tissues samples indicate that it is mandatory to prepare doxorubicin calibration standard samples in biological matrices which would reflect at best the composition of samples to be analyzed. This method was successfully applied in animal studies for the analysis of effluent, serum and tissue samples collected from pigs and rats undergoing ILP.
Resumo:
Abstract : Gene duplication is an essential source of material for the origin of genetic novelty and the evolution of lineage- or species-specific phenotypic traits. The reverse transcription of source gene mRNA followed by the genomic insertion of the resulting cDNA - retroposition - has provided the human genome with a significant number of gene copies during the last ~63 million years (MYA) of primate evolution. We estimated that at least 1 new functional gene (retrogene) per MYA emerged by retroposition in the primate lineage leading to humans. Using a combination of comparative sequencing and evolutionary simulations, we obtained strong evidence of functionality for 7 primate specific retrogenes. Most of these genes are specifically expressed in testis suggesting that retroposition has contributed with genetic raw material necessary for the evolution ofmale-specific functions in primates. We characterized CDC14Bretro (identified in the previous survey) that originated from the retroposition of a cell cycle gene - CDC14B - in the common ancestor of humans and apes. We demonstrate that CDC14Bretro experienced a period of intense positive selection in the African ape ancestor. By virtue of the amino acid substitutions that occurred during this period CDC 14Bretro adapted to a new subcellular compartment in African apes. Further analyses indicate that this subcellular shift reflects the evolution of anew functional role of CDC 14Bretro. Prompted by this result, we used yeast (Saccharomyces cerevisiae) to investigate on a global scale the extent of functional diversification of duplicate genes through the subcellular adaptation of their encoded proteins. We found that duplicate proteins frequently evolved new cellular localization patterns, either by partitioning of ancestral localizations ("sublocalization"), or more frequently by relocalization to previously unoccupied compartments ("neolocalization"). Interestingly, proteins involved in processes with a wider subcellular distribution more frequently evolved new localization patterns suggesting that subcellular localization changes are dependent on progenitor gene functions. Relocated proteins adapted to their new subcellular environments and evolved new functional roles through changes of their physio-chemical properties, expression levels, and interaction partners. Our work suggests an important role of subcellular adaptation for the emergence of new gene functions.
Resumo:
Integrin receptors are the main mediators of cell adhesion to the extracellular matrix. They bind to their ligands by interacting with short amino acid sequences, such as the RGD sequence. Soluble, small RGD-based peptides have been used to block integrin-binding to ligands, thereby interfering with cell adhesion, migration and survival, while substrate-immobilized RGD sequences have been used to enhance cell binding to artificial surfaces. This approach has several important medical applications, e.g. in suppression of tumor angiogenesis or stimulation of bone formation around implants. However, the relatively weak affinity of short RGD-containing peptides often results in incomplete integrin inhibition or ineffective ligation. In this work, we designed and synthesized several new multivalent RGD-containing molecules and tested their ability to inhibit or to promote integrin-dependent cell adhesion when used in solution or immobilized on substrates, respectively. These molecules consist of an oligomeric structure formed by alpha-helical coiled coil peptides fused at their amino-terminal ends with an RGD-containing fragment. When immobilized on a substrate, these peptides specifically promoted integrin alphaVbeta3-dependent cell adhesion, but when used in solution, they blocked alphaVbeta3-dependent cell adhesion to the natural substrates fibronectin and vitronectin. One of the peptides was nearly 10-fold more efficient than fibronectin or vitronectin in promoting cell adhesion, and almost 100-fold more efficient than a linear RGD tripeptide in blocking adhesion. These results indicate that alpha-helical coiled coil peptides carrying an amino-terminal RGD motif can be used as soluble antagonists or surface-immobilized agonists to efficiently inhibit or promote integrin alphaVbeta3-mediated cell adhesion, respectively.
Resumo:
Identification of post-translational modifications of proteins in biological samples often requires access to preanalytical purification and concentration methods. In the purification step high or low molecular weight substances can be removed by size exclusion filters, and high abundant proteins can be removed, or low abundant proteins can be enriched, by specific capturing tools. In this paper is described the experience and results obtained with a recently emerged and easy-to-use affinity purification kit for enrichment of the low amounts of EPO found in urine and plasma specimens. The kit can be used as a pre-step in the EPO doping control procedure, as an alternative to the commonly used ultrafiltration, for detecting aberrantly glycosylated isoforms. The commercially available affinity purification kit contains small disposable anti-EPO monolith columns (6 ?L volume, Ø7 mm, length 0.15 mm) together with all required buffers. A 24-channel vacuum manifold was used for simultaneous processing of samples. The column concentrated EPO from 20 mL urine down to 55 ?L eluate with a concentration factor of 240 times, while roughly 99.7% of non-relevant urine proteins were removed. The recoveries of Neorecormon (epoetin beta), and the EPO analogues Aranesp and Mircera applied to buffer were high, 76%, 67% and 57%, respectively. The recovery of endogenous EPO from human urine was 65%. High recoveries were also obtained when purifying human, mouse and equine EPO from serum, and human EPO from cerebrospinal fluid. Evaluation with the accredited EPO doping control method based on isoelectric focusing (IEF) showed that the affinity purification procedure did not change the isoform distribution for rhEPO, Aranesp, Mircera or endogenous EPO. The kit should be particularly useful for applications in which it is essential to avoid carry-over effects, a problem commonly encountered with conventional particle-based affinity columns. The encouraging results with EPO propose that similar affinity monoliths, with the appropriate antibodies, should constitute useful tools for general applications in sample preparation, not only for doping control of EPO and other hormones such as growth hormone and insulin but also for the study of post-translational modifications of other low abundance proteins in biological and clinical research, and for sample preparation prior to in vitro diagnostics.
Resumo:
Protective adaptive immune responses rely on TCR-mediated recognition of Ag-derived peptides presented by self-MHC molecules. However, self-Ag (tumor)-specific TCRs are often of too low affinity to achieve best functionality. To precisely assess the relationship between TCR-peptide-MHC binding parameters and T cell function, we tested a panel of sequence-optimized HLA-A(*)0201/NY-ESO-1(157-165)-specific TCR variants with affinities lying within physiological boundaries to preserve antigenic specificity and avoid cross-reactivity, as well as two outliers (i.e., a very high- and a low-affinity TCR). Primary human CD8 T cells transduced with these TCRs demonstrated robust correlations between binding measurements of TCR affinity and avidity and the biological response of the T cells, such as TCR cell-surface clustering, intracellular signaling, proliferation, and target cell lysis. Strikingly, above a defined TCR-peptide-MHC affinity threshold (K(D) < approximately 5 muM), T cell function could not be further enhanced, revealing a plateau of maximal T cell function, compatible with the notion that multiple TCRs with slightly different affinities participate equally (codominantly) in immune responses. We propose that rational design of improved self-specific TCRs may not need to be optimized beyond a given affinity threshold to achieve both optimal T cell function and avoidance of the unpredictable risk of cross-reactivity.
Resumo:
Abstract The plasmid pME6863, carrying the aiiA gene from the soil bacterium Bacillus sp. A24 that encodes a lactonase enzyme able to degrade N-acyl-homoserine lactones (AHLs), was introduced into the rhizosphere isolate Pseudomonas fluorescens P3. This strain is not an effective biological control agent against plant pathogens. The transformant P. fluorescens P3/pME6863 acquired the ability to degrade AHLs. In planta, P. fluorescens P3/pME6863 significantly reduced potato soft rot caused by Erwinia carotovora and crown gall of tomato caused by Agrobacterium tumefaciens to a similar level as Bacillus sp. A24. Little or no disease reduction was observed for the wild-type strain P3 carrying the vector plasmid without aiiA. Suppression of potato soft rot was observed even when the AHL-degrading P. fluorescens P3/pME6863 was applied to tubers 2 days after the pathogen, indicating that biocontrol was not only preventive but also curative. When antagonists were applied individually with the bacterial plant pathogens, biocontrol activity of the AHL degraders was greater than that observed with several Pseudomonas 2,4-diacetylphloroglucinol-producing strains and with Pseudomonas chlororaphis PCL1391, which relies on production of phenazine antibiotic for disease suppression. Phenazine production by this well characterized biological control strain P. chlororaphis PCL1391 is regulated by AHL-mediated quorum sensing. When P. chlororaphis PCL1391 was co-inoculated with P. fluorescens P3/pME6863 in a strain mixture, the AHL degrader interfered with the normally excellent ability of the antibiotic producer to suppress tomato vascular wilt caused by Fusarium oxysporum f. sp. lycopersici. Our results demonstrate AHL degradation as a novel biocontrol mechanism, but also demonstrate the potential for non-target interactions that can interfere with the biocontrol efficacy of other strains.
Resumo:
Although hemoglobin (Hb) is mainly present in the cytoplasm of erythrocytes (red blood cells), lower concentrations of pure, cell-free Hb are released permanently into the circulation due to an inherent intravascular hemolytic disruption of erythrocytes. Previously it was shown that the interaction of Hb with bacterial endotoxins (lipopolysaccharides, LPS) results in a significant increase of the biological activity of LPS. There is clear evidence that the enhancement of the biological activity of LPS by Hb is connected with a disaggregation of LPS. From these findings one questions whether the property to enhance the biological activity of endotoxin, in most cases proven by the ability to increase the cytokine (tumor-necrosis-factor-alpha, interleukins) production in human mononuclear cells, is restricted to bacterial endotoxin or is a more general principle in nature. To elucidate this question, we investigated the interaction of various synthetic and natural virulence (pathogenicity) factors with hemoglobin of human or sheep origin. In addition to enterobacterial R-type LPS a synthetic bacterial lipopeptide and synthetic phospholipid-like structures mimicking the lipid A portion of LPS were analysed. Furthermore, we also tested endotoxically inactive LPS and lipid A compounds such as those from Chlamydia trachomatis. We found that the observations made for endotoxically active form of LPS can be generalized for the other synthetic and natural virulence factors: In every case, the cytokine-production induced by them is increased by the addition of Hb. This biological property of Hb is connected with its physical property to convert the aggregate structures of the virulence factors into one with cubic symmetry, accompanied with a considerable reduction of the size and number of the original aggregates.
Resumo:
IL-2 is crucial to T cell homeostasis, especially of CD4(+) T regulatory cells and memory CD8(+) cells, as evidenced by vigorous proliferation of these cells in vivo following injections of superagonist IL-2/anti-IL-2 antibody complexes. The mechanism of IL-2/anti-IL-2 antibody complexes is unknown owing to a lack of understanding of IL-2 homeostasis. We show that IL-2 receptor alpha (CD25) plays a crucial role in IL-2 homeostasis. Thus, prolongation of IL-2 half-life and blocking of CD25 using antibodies or CD25-deficient mice led in combination, but not alone, to vigorous IL-2-mediated T cell proliferation, similar to IL-2/anti-IL-2 antibody complexes. These data suggest an unpredicted role for CD25 in IL-2 homeostasis.
Resumo:
Objectives: The aim of this study was to compare specificity and sensitivity of different biological markers that can be used in a forensic field to identify potentially dangerous drivers because of their alcohol habits. Methods: We studied 280 Swiss drivers after driving while under the alcohol influence. 33 were excluded for not having CDT N results, 247 were included (218 men (88%) and 29 women (12%). Mean age was 42,4 (SD:12, min: 20 max: 76). The evaluation of the alcohol consumption concerned the month before the CDT test and was considered as such after the interview: Heavy drinkers (>3 drinks per day): 60 (32.7%), < 3 drinks per day and moderate: 127 (51.4%) 114 (46.5%), abstinent: 60 (24.3%) 51 (21%). Alcohol intake was monitored by structured interviews, self-reported drinking habits and the C-Audit questionnaire as well as information provided by their family and general practitioner. Consumption was quantified in terms of standard drinks, which contain approximately 10 grams of pure alcohol (Ref. WHO). Results: comparison between moderate (less or equal to 3 drinks per day) and excessive drinkers (more than 3 drinks) Marker ROC area 95% CI cut-off sensitivity specificity CDT TIA 0.852 0.786-0917 2.6* 0.93 LR+1.43 0.35 LR-0.192 CDT N latex 0.875 0.821-0.930 2.5* 0.66 LR+ 6.93 0.90 LR- 0.369 Asialo+disialo-tf 0.881 0.826-0.936 1.2* 0.78 LR+4.07 0.80 LR-0.268 1.7° 0.66 LR+8.9 0.93 LR-0.360 GGT 0.659 0.580-0.737 85* 0.37 LR+2.14 0.83 LR-0.764 * cut-off point suggested by the manufacturer ° cut-off point suggested by our laboratory Conclusion: With the cut-off point established by the manufacturer, CDT TIA performed poorly in term of specificity. N latex CDT and CZE CDT were better, especially if a 1.7 cut-off is used with CZE
Resumo:
ABSTRACT Poor outcome for glioblastoma patients is largely due to resistance to chemoradiation therapy. While epigenetic inactivation of MGMT mediated DNA repair is highly predictive for benefit from the alkylating agent therapy Temozolomide, additional mechanisms for resistance associated with molecular alterations exist. Furthermore, new concepts in cancer suggest that resistance to treatment may be linked to cancer stem cells that escape therapy and act as source for tumour recurrence. We determined gene expression signatures associated with outcome in glioblastoma patients enrolled in a phase II and phase III clinical trial establishing the new combination therapy of radiation plus concomitant and adjuvant Temozolomide. Correlating stable gene clusters emerging from unsupervised analysis with survival of 42 treated patients identified a number of biological processes associated with outcome. Most prominent, a gene cluster dominated by HOX genes and comprising PROM1, was associated with resistance. PROM1 encodes CD133, a marker for a subpopulation of tumour cells enriched for glioblastoma stem- like cells. The core of this correlated HOX cluster was comprised in the top genes of a "self-renewal signature" defined in a mouse model for MLL-AF9 initiated leukaemia. The association of the HOX gene cluster with tumour resistance was confirmed in two external data sets of 146 malignant glioma As additional resistance factors we identified over-expression of the epidermal growth factor receptor gene, EGFR, while increased gene expression related to biological features of tumour host interaction, including markers for tumour vascular and cell adhesion, and innate immune response, were associated with better outcome. The "self-renewal" signature associated with resistance to the new combination chemoradiation therapy provides first clinical evidence that glioma stem like cells may implicated in resistance in a uniformly treated cohort of glioblastoma patients. This study underlines the need to target the tumour stem cell compartment, and provides some testable hypothesis for biological mechanisms relevant for malignant behaviour of glioblastoma that may be targeted in new treatment approaches. Résumé Le glioblastome, tumeur cérébrale primaire maligne la plus fréquente, est connue pour son mauvais pronostique. Des avancées chimiothérapeutiques récentes avec des agents alkylants comme le témozolomide (TMZ), ont permis une amélioration notable dans la survie de certains patients. Les bénéficiaires ont la caractéristique commune de présenter une particularité génétique, la methylation du MGMT (methylguanine methyltransferase). Néanmoins, d'autres mécanismes de résistance en fonction des aberrations moléculaires existent. Nous avons établi les profils d'expressions génétiques des patients traités par irradiation et TMZ dans des études cliniques de phase II et III. En combinant des méthodes non-supervisées et supervisées, de l'étude de la cohorte des patients traités nous avons découvert des groupes de gènes associés à la survie. Un ensemble de gènes contenant les gènes Hox semble lié au mécanisme de résistance au traitement. Récemment, les gènes Hox ont été décrits comme faisant partie d"une signature d'autorenouvellement (self-renewal) des cellules souches cancéreuses de la leucémie. L'autorenouvellement est un processus grâce auquel les cellules souches se maintiennent tout au long de la vie. Cette association à la résistance est confirmée dans deux autres études indépendantes. Un autre facteur de résistance au traitement est la surexpression du gène EGFR. D'autre part, deux groupes de gènes associés à la relation entre hôte-tumeur tels que les marqueurs des vaisseaux tumoraux et de la réponse immunitaire innée s'avèrent avoir un effet positif sur la survie des patients traités. La découverte de la signature d'autorenouvellement comme facteur de résistance à la nouvelle chimio-radiothérapie offre une preuve clinique que les cellules souches cancéreuses sont impliquées dans la résistance au traitement. If est donc logique de penser que le traitement ciblé contre des cellules souches cancéreuses va dans l'avenir permettre des thérapies anticancéreuses plus performantes.
Resumo:
CD8(+) cytotoxic T lymphocytes (CTL) can recognize and kill target cells expressing only a few cognate major histocompatibility complex (MHC) I-peptide complexes. This high sensitivity requires efficient scanning of a vast number of highly diverse MHC I-peptide complexes by the T cell receptor in the contact site of transient conjugates formed mainly by nonspecific interactions of ICAM-1 and LFA-1. Tracking of single H-2K(d) molecules loaded with fluorescent peptides on target cells and nascent conjugates with CTL showed dynamic transitions between states of free diffusion and immobility. The immobilizations were explained by association of MHC I-peptide complexes with ICAM-1 and strongly increased their local concentration in cell adhesion sites and hence their scanning by T cell receptor. In nascent immunological synapses cognate complexes became immobile, whereas noncognate ones diffused out again. Interfering with this mobility modulation-based concentration and sorting of MHC I-peptide complexes strongly impaired the sensitivity of antigen recognition by CTL, demonstrating that it constitutes a new basic aspect of antigen presentation by MHC I molecules.