92 resultados para virus capsid antigen


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In experimental animals, oncofoetal antigens1 have been found to be associated with both chemical-2 and virus-induced tumours3. In man the two best known oncofoetal antigens are the α-foetoprotein (AFP) described by both Abelev4 and Tatarinov5 and the carcinoembryonic antigen (CEA) of the human digestive system identified by Gold and Freedman6. We describe here a different human oncofoetal antigen, common to several types of carcinomas and various foetal organs. This antigen has been identified by rabbit antisera raised against semipurified fractions of colon carcinoma soluble extracts. Because of its β-immunoelectrophoretic mobility, this antigen will be referred to as β-oncofoetal antigen (BOFA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human papillomavirus (HPV) vaccines based on L1 virus-like particle (VLP) can prevent genital HPV infection and associated lesions after three intramuscular injections. Needle-free administration might facilitate vaccine implementation, especially in developing countries. Here we have investigated rectal and vaginal administration of HPV16 L1 VLPs in mice and their ability to induce anti-VLP and HPV16-neutralizing antibodies in serum and in genital, rectal and oral secretions. Rectal and vaginal immunizations were not effective in the absence of adjuvant. Cholera toxin was able to enhance systemic and mucosal anti-VLPs responses after rectal immunization, but not after vaginal immunization. Rectal immunization with Resiquimod and to a lesser extent Imiquimod, but not monophosphoryl lipid A, induced anti-HPV16 VLP antibodies in serum and secretions. Vaginal immunization was immunogenic only if administered in mice treated with nonoxynol-9, a disrupter of the cervico-vaginal epithelium. Our findings show that rectal and vaginal administration of VLPs can induce significant HPV16-neutralizing antibody levels in secretions, despite the fact that low titers are induced in serum. Imidazoquinolines, largely used to treat genital and anal warts, and nonoxonol-9, used as genital microbicide/spermicide were identified as adjuvants that could be safely used by the rectal or vaginal route, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the merits of vaccination against hepatitis B virus (HBV) in HIV-positive individuals with isolated antibodies to hepatitis B core antigen (anti-HBc). METHODS: HIV-positive patients with isolated anti-HBc and CD4 counts >200 cells/mm(3) received HBV vaccination. An antibody titre to hepatitis B surface antigen (anti-HBs titres) ≥10 IU/L one month post-vaccination was termed an anamnestic response; a titre <10 IU/L was termed a primary response. Patients with primary responses received a 3-dose vaccine course. Anti-HBs titres in all responders were measured 12 and 24 months post-vaccination. RESULTS: 37 patients were studied: 19 (51%) were co-infected with hepatitis C; median CD4 count was 443 cells/mm(3). 8/37 patients (22%) elicited an anamnestic response. 29/37 patients (78%) elicited a primary response. After a 3-dose vaccine course, 15/25 primary responders (60%) achieved anti-HBs titres ≥10 IU/L. HIV acquisition through injecting drug use was the only independent predictor of an anamnestic response (OR 22.9, CI 1.71-306.74, P=0.018). Median anti-HBs titres for anamnestic and primary responders were 51 IU/L (13-127) and 157 IU/L (25-650) respectively. Of all responders, 12/23 (52%) retained anti-HBs titres ≥10 IU/L at 24 months. Anti-HBs duration was not significantly different between anamnestic and primary responders. CONCLUSIONS: 23/37 HIV-positive patients (62%) with isolated anti-HBc achieved anti-HBs titres ≥10 IU/L after 1-3 vaccine doses. However, duration of this immune response was short-lived (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8(+) T cell epitope, NY-ESO-1(88-96) (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1(157-165) epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1(88-96) is much more efficiently cross-presented from the soluble form, than NY-ESO-1(157-165). On the other hand, NY-ESO-1(157-165) is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A(26-35); whereas NY-ESO-1(88-96) was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1(88-96) is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18(+) melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1(88-96) from patients, including those who received NY-ESO-1 ISCOMATRIX? vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8(+) T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CD8(+)-T-cell response to Moloney murine leukemia virus (M-MuLV)-associated antigens in C57BL/6 mice is directed against an immunodominant gag-encoded epitope (CCLCLTVFL) presented in the context of H-2D(b) and is restricted primarily to cytotoxic T lymphocytes (CTL) expressing the Valpha3.2 and Vbeta5.2 gene segments. We decided to examine the M-MuLV response in congenic C57BL/6 Vbeta(a) mice which are unable to express the dominant Valpha3.2(+) Vbeta5.2(+) T-cell receptor (TCR) due to a large deletion at the TCR locus that includes the Vbeta5.2 gene segment. Interestingly, M-MuLV-immune C57BL/6 Vbeta(a) mice were still able to reject M-MuLV-infected tumor cells and direct ex vivo analysis of peripheral blood lymphocytes from these immune mice revealed a dramatic increase in CD8(+) cells utilizing the same Valpha3.2 gene segment in association with two different Vbeta segments (Vbeta3 and Vbeta17). Surprisingly, all these CTL recognized the same immunodominant M-MuLV gag epitope. Analysis of the TCR repertoire of individual M-MuLV-immune (C57BL/6 x C57BL/6 Vbeta(a))F(1) mice revealed a clear hierarchy in Vbeta utilization, with a preferential usage of the Vbeta17 gene segment, whereas Vbeta3 and especially Vbeta5.2 were used to much lesser extents. Sequencing of TCRalpha- and -beta-chain junctional regions of CTL clones specific for the M-MuLV gag epitope revealed a diverse repertoire of TCRbeta chains in Vbeta(a) mice and a highly restricted TCRbeta-chain repertoire in Vbeta(b) mice, whereas TCRalpha-chain sequences were highly conserved in both cases. Collectively, our data indicate that the H-2D(b)-restricted M-MuLV gag epitope can be recognized in a hierarchal fashion by different Vbeta domains and that the degree of beta-chain diversity varies according to Vbeta utilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tolerance against superantigens (SAgs) encoded by endogenous mouse mammary tumor virus (Mtv) loci involves the intrathymic deletion of SAg-reactive T cells expressing a particular TCR V beta-chain, presumably upon presentation of the SAg by specialized APC. However, although the role of dendritic cells (DC) in the induction of tolerance against conventional Ags has been demonstrated, little is known about the role played by DC in tolerance induction against Mtv SAgs. Moreover, there is conflicting evidence concerning the capacity of DC to express and present Mtv SAgs. In this report we have analyzed the expression of Mtv SAgs in highly purified thymic and splenic DC and B cells by reverse transcriptase-PCR, using primers amplifying Mtv SAg-specific spliced mRNAs. DC express Mtv SAgs at levels comparable to B cells, but display a differential expression pattern of the various Mtv loci compared with B cells. Furthermore, our results show that DC are able to induce the deletion of SAg-reactive thymocytes in an in vitro assay, indicating that Mtv SAgs are functionally expressed on the DC surface. Collectively, our data are consistent with the hypothesis that DC play a role in the induction of intrathymic tolerance to Mtv SAgs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously characterized an infectious mouse mammary tumor virus [(MMTV(SW)] which induces a strong superantigen response in vivo. Here we describe the isolation and characterization of MMTV(C4) which was derived from milk of mice implanted with hyperplastic alveolar nodules. MMTV(C4) stimulates V beta 2 expressing T cells after local injection in vivo. Comparison with known open reading frame (orf) sequences revealed high homology to Mtv-6, an endogenous virus interacting with V beta 3-expressing T cells. The carboxyl-terminal amino acids were, however, altered. High homology including the carboxyl-terminal orf amino acids were found with MMTV(C3H-K). We show here that MMTV(C3H-K) has lost its superantigen function. Sequence comparisons permitted the characterization of few key amino acids which could be important for T cell receptor interaction and superantigen processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autoreactive T lymphocytes are clonally deleted during maturation in the thymus. Deletion of T cells expressing particular receptor V beta elements is controlled by poorly defined autosomal dominant genes. A gene has now been identified by expression of transgenes in mice which causes deletion of V beta 14+ T cells. The gene lies in the open reading frame of the long terminal repeat of the mouse mammary tumour virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Des tentatives pour développer des traitements anti-cancéreux basés sur l'utilisation d'antigènes tumoraux ont commencé il y a plus de 10 ans. Depuis quelques années, un certain intérêt s'est portée sur une sous-population particulière des cellules du système immunitaire, les lymphocytes T CD4. Ces cellules jouent un rôle central dans les réponses immunitaires tant contre les virus que contre les cellules tumorales. Comme d'autres lymphocytes T, ces cellules sont activées de manière spécifique en reconnaissant un morceau d'antigène, appelé peptide. Ces peptides proviennent soit de protéines des cellules de l'hôte, soit des protéines étrangères (virus ou bactéries) soit de cellules transformées (cellules tumorales) et sont présentés aux lymphocytes T par des molécules du soi appelées CMH (complexe majeur d'histocompatibilité). Dans le cas des lymphocytes T CD4, ces molécules sont plus précisément des molécules du CMH de classe II (CMH II). Mis à part l'intérêt porté aux réponses médiées par les lymphocytes T cytotoxiques, un intérêt croissant pour les lymphocytes T CD4 s'est développé à cause de la place centrale qu'occupent ces cellules dans les réponses immunitaires. L'identification d'épitopes présentés par des molécules du CMH de classe II dérivés d'un grand nombre d'antigènes tumoraux, ainsi que le développement de techniques permettant de suivre les réponses immunitaires, offre des opportunités pour étudier de manière quantitative et qualitative les lymphocytes T CD4 spécifiques pour un antigène particulier chez des patients cancéreux. De plus, ces épitopes permettent d'induire des réponses médiées par les lymphocytes T CD4 et CD8 chez ces mêmes patients. Dans ce travail, notre premier but était de valider l'utilisation de multimères formés par des complexes peptide:molécules de CMH de class II (pCMH II) pour quantifier la réponse des cellules T CD4 dirigée contre l'épitope HA307-319 dérivé de la protéine hémaglutinine du virus de la grippe et présenté par HLA-DRB1*0401. En analysant des échantillons provenant de volontaires sains ayant reçus un vaccin contre la grippe, nous avons pu démontrer une expansion et une activation transitoires des lymphocytes T CD4 spécifiques pour le peptide HA307-319 après vaccination. De plus, les multimères pCMH II nous ont permis d'analyser plus en détails hétérogénéité des cellules T CD4 spécifiques pour le peptide HA307-319 présents dans le sang périphérique d'individus sains. Par la suite, notre but a été d'analyser les réponses des lymphocytes T CD4 spécifiques pour l'antigène Melan-A chez des patients atteints de mélanome métastatique. Nous avons tout d'abord démontré la présence de cellules T CD4 spécifiques pour l'épitope Melan-A51-73, présenté par HLA-DRBl*0401, qui avait déjà été préalablement décrit. Ensuite, nous avons décrit et caractérisé 2 nouveaux peptides issus de Melan-A qui sont présentés aux cellules T CD4 par différentes molécules du CMH de clans II. Des cellules spécifiques pour ces deux épitopes ont été trouvées chez 9/ 16 patients analysés. De plus, des multimères pCMH II chargés avec un des épitopes nous ont permis de détecter ex vivo des lymphocytes T CD4 spécifiques pour Melan-A dans le sang périphérique d'un patient atteint de mélanome. Mis ensemble, tous ces résultats suggèrent une potentielle utilisation des multimères pCMH II pour analyser en détail les lymphocytes T CD4 spécifiques d'antigènes définis. Cependant, le suivi ex vivo de telles cellules ne semble être possible que dans des cas bien particuliers. Néanmoins, les nouveaux épitopes issus de Melan-A et présentés par des molécules du CMH de classe II que nous avons décrits dans cette étude aideront à étudier plus en détails les lymphocytes T CD4 spécifiques pour Melan-A chez des patients atteints de mélanome, un sujet d'étude sur lequel peu de résultats sont à ce jour disponibles. Summary Attempts to develop cancer vaccines based on molecularly defined tumorassociated antigens were initiated more than 10 years ago. Apart from CTLmediated anti-tumor immunity, interests are. now focused on CD4 T cells that are central players of immune responses. The identification of MHC class-II-restricted epitopes from numerous tumor antigens together with the development of monitoring tools offers the opportunity to quantitatively and qualitatively study antigen-specific CD4 T lymphocytes in cancer patients and to induce both CTL and T helper responses in cancer patients. In this work, we first aimed at validating the use of peptide:MHC class II complex (pMHC II) multimers to quantitate the CD4 T cell response against the hemagglutinin-derived epitope HAso~-si9 from influenza virus presented by HLA-DRBl*0401. By analysing samples from healthy volunteers vaccinated with ananti-influenza vaccine, we could demonstrate a transient expansion and activation of HA-specific CD4 T cells after treatment. Moreover, pMHC II multimers helped us to study the heterogeneity of HAspecific CD4 T cells found in peripheral blood of healthy individuals. Then, we aimed to analyse Melan-A-specific CD4 T cell responses in metastatic melanoma patients. We first demonstrated the presence of CD4 T cells specific for the previously described Melan-A51_73 epitope presented by HLA-DRB 1 *0401 in peripheral blood of those patients. Second, we described and characterised 2 new Melan-A-derived peptides that are presented by different MHC II molecules to CD4 T cells. Specific cells for these epitopes were found in 9/ 16 rnelánoma patients analysed. In addition, pMHC II multimers loaded with one of the two epitopes allowed us to detect ex vivo Melan-A-specific CD4 T cells in peripheral blood of a melanoma patient. Together, these results suggest a potential use of pMHC II multimers in analysing in detail antigen-specific CD4 T cells. However, ex vivo monitoring of such cells will be possible only in particular conditions. Nevertheless, the new Melan-A-derived MHC II-restricted epitopes described here will help to study in more detail Melan-A-specific CD4 T cells in melanoma patients, a field where only scarce data are available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some patients infected with human immunodeficiency virus (HIV) who are experiencing antiretroviral treatment failure have persistent improvement in CD4+ T cell counts despite high plasma viremia. To explore the mechanisms responsible for this phenomenon, 2 parameters influencing the dynamics of CD4+ T cells were evaluated: death of mature CD4+ T cells and replenishment of the CD4+ T cell pool by the thymus. The improvement in CD4+ T cells observed in patients with treatment failure was not correlated with spontaneous, Fas ligand-induced, or activation-induced T cell death. In contrast, a significant correlation between the improvement in CD4+ T cell counts and thymic output, as assessed by measurement of T cell receptor excision circles, was observed. These observations suggest that increased thymic output contributes to the dissociation between CD4+ T cell counts and viremia in patients failing antiretroviral therapy and support a model in which drug-resistant HIV strains may have reduced replication rates and pathogenicity in the thymus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) expresses a superantigen (SAg) which plays a critical role in the viral life cycle. We have recently described the new infectious MMTV (SIM) encoding a Vbeta4-specific SAg in mice with a TCR-Vbeta(b) haplotype. We have now compared the SAg activity of this virus in BALB/c mice harboring the TCR-Vbeta(a), TCR-Vbeta(b) or TCR-Vbeta(c) haplotypes which differ by a central deletion in the TCR-Vbeta(a) and TCR-Vbeta(c) locus and by mutations in some of the remaining Vbeta elements. Injection of MMTV (SIM) led to a strong stimulation of Vbeta4+ CD4+ T cells in TCR-Vbeta(b) mice, but only to a weak stimulation of these cells in TCR-Vbeta(a) or TCR-Vbeta(c) mice. A large increase in the percentage of Vbeta10+ cells was observed among CD4+ T cells in mice with the Vbeta(a) or Vbeta(c), but not the Vbeta(b) TCR-Vbeta haplotype. Vbeta10+ cells dominated the response when Vbeta10(a/c) and Vbeta4 subsets were present together. This is the first report of a viral SAg interacting with murine Vbeta10+ cells. Six amino acid differences between Vbeta10(a/c) and Vbeta10(b) could account for the gain of reactivity of Vbeta10(a/c) to the MMTV(SIM) SAg. No mutations were found in the hypervariable region 4 (HV4) of the TCR. Mutations at positions 22 and 28 introduce into Vbeta10(a/c) the same amino acids which are found at these positions in the MMTV(SIM)-reactive Vbeta4. Tridimensional models indicated that these amino acids lie close to HV4 and are likely to be important for the interaction of the SAg with the TCR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endogenous and infectious mouse mammary tumor viruses (MMTVs) encode in their 3' long terminal repeat a protein that exerts superantigen activity; that is, it is able to interact with T cells via the variable domain of the T cell receptor (TCR) beta chain. We show here that transmission of an infectious MMTV is prevented when superantigen-reactive cells are absent through either clonal deletion due to the expression of an endogenous MTV with identical superantigen specificity or exclusion due to expression of a transgenic TCR beta chain that does not interact with the viral superantigen. A strict requirement for superantigen-reactive T cells is also seen for a local immune response following MMTV infection. This immune response locally amplifies the number of MMTV-infected B cells, most likely owing to their clonal expansion. Collectively, our data indicate that a superantigen-induced immune response is critical for the MMTV life cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Education and diagnostic tests capable of early detection represent our most effective means of preventing transmission of human immunodeficiency virus (HIV). The importance of early detection is underlined by studies demonstrating increased life expectancy following early initiation of antiviral treatment. The Elecsys(®) HIV combi PT assay is a fourth-generation antigen-antibody combination assay developed to allow earlier detection of seroconversion, and to have increased sensitivity and improved specificity. We aimed to determine how early the assay could detect infection compared with existing assays; whether all HIV variants could be detected; and the assay's specificity using samples from blood donors, routine specimens, and patients with potential cross-reacting factors. Samples were identified as positive by the Elecsys(®) assay 4.9 days after a positive polymerase chain reaction result (as determined by the panel supplier), which was earlier than the 5.3-7.1 days observed with comparators. The analytical sensitivity of the Elecsys(®) HIV combi PT assay for the HIV-1 p24 antigen was 1.05 IU/mL, which compares favorably with the comparator assays. In addition, the Elecsys(®) assay identified all screened HIV subtypes and displayed greater sensitivity to HIV-2 homologous antigen and antibodies to HIV-1 E and O and HIV-2 than the other assays. Overall, the specificity of the Elecsys(®) assay was 99.88 % using samples from blood donors and 99.81 % when analyzing unselected samples. Potential cross-reacting factors did not interfere with assay performance. The Elecsys(®) HIV combi PT assay is a sensitive and specific assay that has been granted the CE mark according to Directive 2009/886/EC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plaque formation in vaccinia virus is inhibited by the compound N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine (IMCBH). We have isolated a mutant virus that forms wild-type plaques in the presence of the drug. Comparison of wild-type and mutant virus showed that both viruses produced similar amounts of infectious intracellular naked virus in the presence of the drug. In contrast to the mutant, no extracellular enveloped virus was obtained from IMCBH-treated cells infected with wild-type virus. Marker rescue experiments were used to map the mutation conferring IMCBH resistance to the mutant virus. The map position coincided with that of the gene encoding the viral envelope antigen of M(r) 37,000. Sequence analysis of both wild-type and mutant genes showed a single nucleotide change (G to T) in the mutant gene. In the deduced amino acid sequence, the mutation changes the codon for an acidic Asp residue in the wild-type gene to one for a polar noncharged Tyr residue in the mutant.