136 resultados para sensory-motor incongruence
Resumo:
OBJECTIVES AND METHODS: Excitability changes in the primary motor cortex in 17 spinal-cord injured (SCI) patients and 10 controls were studied with paired-pulse transcranial magnetic stimulation. The paired pulses were applied at inter-stimulus intervals (ISI) of 2 ms and 15 ms while motor evoked potentials (MEP) were recorded in the biceps brachii (Bic), the abductor pollicis brevis (APB) and the tibialis anterior (TA) muscles. RESULTS: The study revealed a significant decrease in cortical motor excitability in the first weeks after SCI concerning the representation of both the affected muscles innervated from spinal segments below the lesion, and the spared muscles rostral to the lesion. In the patients with motor-incomplete injury, but not in those with motor-complete injury, the initial cortical inhibition of affected muscles was temporarily reduced 2-3 months following injury. The degree of inhibition in cortical areas representing the spared muscles was observed to be smaller in patients with no voluntary TA activity compared to patients with some activity remaining in the TA. Surprisingly, motor-cortical inhibition was observed not only at ISI 2 ms but also at ISI 15 ms. The inhibition persisted in patients who returned for a follow-up measurement 2-3 years later. CONCLUSION: The present data showed different evaluation of cortical excitability between patients with complete and incomplete spinal cord lesion. Our results provide more insight into the pathophysiology of SCI and contribute to the ongoing discussion about the recovery process and therapy of SCI patients.
Resumo:
Immunoreactivity to calbindin D-28k, a vitamin D-dependent calcium-binding protein, is expressed by neuronal subpopulations of dorsal root ganglia (DRG) in the chick embryo. To determine whether the expression of this phenotypic characteristic is maintained in vitro and controlled by environmental factors, dissociated DRG cell cultures were performed under various conditions. Subpopulations of DRG cells cultured at embryonic day 10 displayed calbindin-immunoreactive cell bodies and neurites in both neuron-enriched or mixed DRG cell cultures. The number of calbindin-immunoreactive ganglion cells increased up to 7-10 days of culture independently of the changes occurring in the whole neuronal population. The presence of non-neuronal cells, which promotes the maturation of the sensory neurons, tended to reduce the percentage of calbindin-immunoreactive cell bodies. Addition of horse serum enhanced both the number of calbindin-positive neurons and the intensity of the immunostaining, but does not prevent the decline of the subpopulation of calbindin-immunoreactive neurons during the second week of culture; on the contrary, the addition of muscular extract to cultures at 10 days maintained the number of calbindin-expressing neurons. While calbindin-immunoreactive cell bodies grown in culture were small- or medium-sized, no correlation was found between cell size and immunostaining density. At the ultrastructural level, the calbindin immunoreaction was distributed throughout the neuroplasm. These results indicate that the expression of calbindin by sensory neurons grown in vitro may be modulated by horse serum-contained factors or interaction with non-neuronal cells. As distinct from horse serum, muscular extract is able to maintain the expression of calbindin by a subpopulation of DRG cells.
Resumo:
Introduction : The pathological processes caused by Alzheimer's disease (AD) supposedly disrupt communication between and within the distributed cortical networks due to the dysfunction/loss of synapses and myelination breakdown. Indeed, recently (Knyazeva et al. 2008), we have revealed the whole-head topography of EEG synchronization specific to AD. Here we analyze whether and how these abnormalities of synchronization are related to the demyelination of cortico-cortical fibers. Methods : Fifteen newly diagnosed AD patients (CDR 0.5-1) and 15 controls matched for age, participated in the study. Their multichannel (128) EEGs were recorded during 3-5 min at rest. They were submitted to the multivariate phase synchronization (MPS) analysis for mapping regional synchronization. To obtain individual whole-head maps, the MPS was computed for each sensor considering its 2nd nearest topographical neighbors. Separate calculations were performed for the delta, theta, alpha-1/−2, and beta-1/−2 EEG bands. The same subjects were scanned on a 3 Tesla Philips scanner. The protocol included a high-resolution T1-weighted sequence and a Magnetization Transfer Imaging (MTI) acquisition. For each subject, we defined a 3mm thick layer of white matter exactly below the cortical gray matter. The magnetization transfer ratio (MTR) - an estimator of myelination - was calculated for this layer in 39 Brodmann-defined ROIs per hemisphere. To assess the between-group differences, we used a permutation version of Hotelling's T2 test or two-sample T-test (Pcorrected <0.05). For correlation analysis, Spearman Rank Correlation was calculated. Results : In AD patients, we have found an abnormal landscape of synchronization characterized by a decrease in MPS over the fronto-temporal region of the left hemisphere and an increase over the temporo-parieto-occipital regions bilaterally. Also, we have shown a widespread decrease in regional MTR in the AD patients for all the areas excluding motor, premotor, and primary sensory ones. Assuming that AD-related changes in synchronization are associated with demyelination, we hypothesized a correlation between the regional MTR values and MPS values in the hypo- and hyper-synchronized clusters. We found that MPS in the left fronto-temporal hypo-synchronized cluster directly correlates with myelination in BA42-46 of the left hemisphere: the lower the myelination in individual patients, the lower the EEG synchronization. By contrast, in the posterior hyper-synchronized cluster, MPS inversely correlated with myelination, i.e., the lower the myelination, the higher the synchronization. This posterior hyper-synchronization, more characteristic for early-onset AD, probably, results from the initial effect of the disease on cortical inhibition, reducing cortical capacity for decoupling irrelevant connections. Remarkably, it showed different topography of correlations in early- vs. late-onset patients. In the early-onset patients, hyper-synchronization was mainly related to demyelination in posterior BAs, the effect being significant in all the EEG frequency bands. In the late-onset patients, widely distributed correlations were significant for the EEG delta band, suggesting an interaction between the cerebral manifestations of AD and the age of its onset, i.e., topographically selective impairment of cortical inhibition in early-onset AD vs. its wide-spread weakening in old age. Conclusions : Overall, our results document that the degradation of white matter is a significant factor of AD pathogenesis leading to functional dysconnection, the latter being reflected in EEG synchronization abnormalities.
Resumo:
Inflammatory mediators induce neuropeptide release from nociceptive nerve endings and cell bodies, causing increased local blood flow and vascular leakage resulting in edema. Neuropeptide release from sensory neurons depends on an increase in intracellular Ca2+ concentration. In this study we investigated the role of two types of pH sensors in acid-induced Ca2+ entry and neuropeptide release from dorsal root ganglion (DRG) neurons. The transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs) are both H+-activated ion channels present in these neurons, and are therefore potential pH sensors for this process. We demonstrate with in situ hybridization and immunocytochemistry that TRPV1 and several ASIC subunits are co-expressed with neuropeptides in DRG neurons. Activation of ASICs and of TRPV1 led to an increase in intracellular Ca2+ concentration. While TRPV1 has a high Ca2+ permeability and allows direct Ca2+ entry when activated, we show here that ASICs of DRG neurons mediate Ca2+ entry mostly by depolarization-induced activation of voltage-gated Ca2+ channels and only to a small extent via the pore of Ca2+-permeable ASICs. Extracellular acidification led to release of the neuropeptide calcitonin gene-related peptide from DRG neurons. The pH dependence and the pharmacological profile indicated that TRPV1, but not ASICs, induced neuropeptide secretion. In conclusion, this study shows that although both TRPV1 and ASICs mediate Ca2+ influx, TRPV1 is the principal sensor for acid-induced neuropeptide secretion from sensory neurons.
Resumo:
There are no validated criteria for the diagnosis of sensory neuronopathy (SNN) yet. In a preliminary monocenter study a set of criteria relying on clinical and electrophysiological data showed good sensitivity and specificity for a diagnosis of probable SNN. The aim of this study was to test these criteria on a French multicenter study. 210 patients with sensory neuropathies from 15 francophone reference centers for neuromuscular diseases were included in the study with an expert diagnosis of non-SNN, SNN or suspected SNN according to the investigations performed in these centers. Diagnosis was obtained independently from the set of criteria to be tested. The expert diagnosis was taken as the reference against which the proposed SNN criteria were tested. The set relied on clinical and electrophysiological data easily obtainable with routine investigations. 9/61 (16.4 %) of non-SNN patients, 23/36 (63.9 %) of suspected SNN, and 102/113 (90.3 %) of SNN patients according to the expert diagnosis were classified as SNN by the criteria. The SNN criteria tested against the expert diagnosis in the SNN and non-SNN groups had 90.3 % (102/113) sensitivity, 85.2 % (52/61) specificity, 91.9 % (102/111) positive predictive value, and 82.5 % (52/63) negative predictive value. Discordance between the expert diagnosis and the SNN criteria occurred in 20 cases. After analysis of these cases, 11 could be reallocated to a correct diagnosis in accordance with the SNN criteria. The proposed criteria may be useful for the diagnosis of probable SNN in patients with sensory neuropathy. They can be reached with simple clinical and paraclinical investigations.
Resumo:
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (<1 year old, n=9), later onset (>6 years old, n=7) or progressive disorder (idiopathic dystonia, n=2). All patients showed deficits in both visuo-motor and cognitive domains, except those with idiopathic dystonia, who displayed preserved classification learning skills. Impairments seem to be independent from the age of onset of pathology. As far as we know, this study is the first to investigate motor and cognitive procedural learning in children with BG damage. Procedural impairments were documented whatever the aetiology of the BG damage/dysfunction and time of pathology onset, thus supporting the claim of very early skill learning development and lack of plasticity in case of damage.
Resumo:
Introduction: Motor abilities in schoolchildren have been decreasing in the last two decades (Bös, 2003, Tomkinson et al., 2003). This may be related to the dramatic increase in overweight and adiposity during the same time period. Children of migrant background are especially affected (Lasserre et al., 2007). But little is known about the relationship between BMI and migration background and motor abilities in preschool children. Methods/Design We carried out a cross-sectional analysis with 665 children (age 5.1 ± 0.6 years; 49.8 % female) of 40 randomly selected kindergarten classes from German and French speaking regions in Switzerland with a high migrant background. We investigated BMI, cardiorespiratory fitness (20 m shuttle run), static (displacement of center of pressure (COP)) and dynamic (balancing forward on a beam) postural control and overall fitness (obstacle course). Results: Of the children, 9.6 % were overweight, 10.5 % were obese (Swiss national percentiles) and 72.8 % were of migrant background (at least one parent born outside of Switzerland). Mean BMI from children of non-migrant background was 15.5 ± 1.1 kg/m2, while migrant children had a mean BMI of 15.8 ± 1.7 kg/m2 (p=0.08). Normal-weight children performed better in cardiorespiratory fitness (3.1 ± 1.4 vs. 2.6 ± 1.1 stages, p<0.001), overall fitness (18.9 ± 4.4 vs. 20.8 ± 4.6 sec, p<0.001) and in dynamic balance (4.9 ± 3.5 vs. 3.8 ± 2.5 steps, p<0.001) compared to overweight and obese children, while the latter had less postural sway (COP: 956 ± 302 vs. 1021 ± 212 mm, p=0.008). There was a clear inverse dose-response relationship between weight status and dynamic motor abilities. There were no significant differences in most tested motor abilities between non-migrant and migrant. The latter performed less well in only one motor test (overall fitness: 20.2 ± 5.2 vs. 18.3 ± 3.5 sec, p<0.001). These findings persisted after adjustment for BMI. Conclusion In preschool children, differences in motor abilities are already present between normal weight and overweight/obese children. However, migrant children demonstrate similar motor abilities compared to non-migrant children for almost all tests, despite their slightly higher BMI.
Resumo:
INTRODUCTION: We tested the hypothesis that twitch potentiation would be greater following conventional (CONV) neuromuscular electrical stimulation (50-µs pulse width and 25-Hz frequency) compared with wide-pulse high-frequency (WPHF) neuromuscular electrical stimulation (1-ms, 100-Hz) and voluntary (VOL) contractions, because of specificities in motor unit recruitment (random in CONV vs. random and orderly in WPHF vs. orderly in VOL). METHODS: A single twitch was evoked by means of tibial nerve stimulation before and 2 s after CONV, WPHF, and VOL conditioning contractions of the plantar flexors (intensity: 10% maximal voluntary contraction; duration: 10 s) in 13 young healthy subjects. RESULTS: Peak twitch increased (P<0.05) after CONV (+4.5±4.0%) and WPHF (+3.3±5.9%), with no difference between the 2 modalities, whereas no changes were observed after VOL (+0.8±2.6%). CONCLUSIONS: Our results demonstrate that presumed differences in motor unit recruitment between WPHF and CONV do not seem to influence twitch potentiation results.
Resumo:
L'imagerie mentale est définie comme une expérience similaire à la perception mais se déroulant en l'absence d'une stimulation physique. Des recherches antérieures ont montré que l'imagerie mentale améliore la performance dans certains domaines, comme par exemple le domaine moteur. Cependant, son rôle dans l'apprentissage perceptif n'a pas encore été étudié. L'apprentissage perceptif correspond à l'amélioration permanente des performances suite à la répétition de la même tâche. Cette thèse présente une série des résultats empiriques qui montrent que l'apprentissage perceptif peut aussi être achevé en l'absence des stimuli physiques. En effet, imaginer des stimuli visuels amène à une meilleure performance avec les stimuli réels. Donc, les processus sous-jacents l'apprentissage perceptif ne sont pas uniquement déclenchés par les stimuli sensoriels, mais également par des signaux internes. En plus, l'apprentissage perceptif à travers l'imagerie mentale ne se réalise que seule-ment quand les stimuli ne sont pas (complètement) présents, mais gaiement quand les stimuli montrés ne sont pas utiles quant à la résolution de la tâche. - Mental imagery is described as an experience that resembles pereeptnal ex-perience but which occurs in the absence ef a physical stimulation. Despite its beneficial effects in, among others, motor performance, the role of mental imagery m perceptual learning has not yet been addressed. Here we focus on a specific sensory modality: vision. Perceptual learning is the ability to improve perception in a stable way through the repetition of a given task Here I demonstrate by a series of empirical results that a perceptual improve¬ment can also occur in the absence of a stimulation. Imagining visual stimuli is sufficient for successful perceptual learning. Hence, processes underlying perceptual learning are not only stimulus-driven but can also be driven by internally generated signals. Moreover, I also show that perceptual learning via mental imagery can occur not only when physical stimuli are (partially) absent, but also in conditions where stimuli are uninformative with respect to the task that has to be learned.
Resumo:
The 24-hour rest-activity pattern and the amount of motor activity was studied in a patient with fatal familial insomnia (FFI) by means of wrist actigraphy. During the study, the patient underwent indirect calorimetry. The 52-day recording showed severe disruption of the 24-hour rest-activity pattern with increased motor activity up to 80%. The 24-hour energy expenditure, assayed in a respiration chamber, was strikingly elevated by 60%. Chronic motor overactivity and loss of circadian rest-activity rhythm may play a role in the progressive metabolic exhaustion leading to death in FFI patients.