129 resultados para gaseous pollutants
Resumo:
Saffaj et al. recently criticized our method of monitoring carbon dioxide in human postmortem cardiac gas samples using Headspace-Gas Chromatography-Mass Spectrometry. According to the authors, their demonstration, based on the latest SFSTP guidelines (established after 2007 [1,2]) fitted for the validation of drug monitoring bioanalytical methods, has put in evidence potential errors. However, our validation approach was built using SFSTP guidelines established before 2007 [3-6]. We justify the use of these guidelines because of the post-mortem context of the study (and not clinical) and the gaseous state of the sample (and not solid or liquid). Using these guidelines, our validation remains correct.
Resumo:
The late Variscan (275-278 Ma) Pribram uranium deposit is one of the largest known accumulations of uraniferous bitumens in hydrothermal veins. The deposit extends along the northwestern boundary of the Central Bohemian pluton (345-335 Ma) with low-grade metamorphosed Late Proterozoic and unmetamorphosed Cambrian rocks. From a net uranium production of 41,742 metric tons (t), more than 6,000 t were extracted from bitumen-uraninite ores during 43 years of exploration and mining. Three morphological varieties of solid bitumen are recognized: globular, asphaltlike, and cokelike. While the globular bitumen is uranium free, the other two types are uraniferous. The amount of bitumen in ore veins gradually decreases toward the contact with the plutonic body and increases with depth. Two types of bitumen microtextures are recognized using high-resolution transmission electron microscopy: amorphous and microporous, the former being less common in uraniferous samples. A lower Raman peak area ratio (1,360/1,575 cm(-1)) in mineralized bitumens (0.9) compared with uranium-free samples (2.0) indicates a lower degree of microtextural organization in the latter The H/C and O/C atomic ratios in uranium-free bitumens (0.9-1.1 and 0.09, respectively) are higher than those in mineralized samples (H/C = 0.3-0.8, O/C = 0.03-0.09). The chloroform extractable matter yield is Very low in uranium-free bitumens (0.30-0.35% of the total organic carbon,TOC) and decreases with uranium content increase. The extracted solid uraniferous bitumen infrared spectra show depletion in aliphatic CH2 and CH3 groups compared to uranium-free samples. The concentration of oxygen-bearing functional groups relative to aromatic bonds in the IR spectra of uranium-free and mineralized bitumen, however, do not differ significantly. C-13 NMR confirmed than the aromaticity of a uraniferous sample is higher (F-ar = 0.61) than in the uranium-free bitumen (F-ar = 0.51). Pyrolysates from uraniferous and nonuraniferous bitumens do not differ significantly, being predominantly cresol, alkylphenols, alkylbenzenes, and alkylnaphthalenes. The liquid pyrolysate yield decreases significantly with increasing uranium content. The delta(13)C Values of bulk uranium-free bitumens and low-grade uraniferous, asphaltlike bitumens range from -43.6 to 52.3 per mil. High-grade, cokelike, uraniferous bitumens are more C-13 depleted (54.5 to -58.4 parts per thousand). In contrast to the very light isotopic ratios of the high-grade uraniferous cokelike bitumen bulk carbon, the individual n-alkanes and isoprenoids (pristane and phytane) extracted from the same sample are significantly C-13 enriched. The isotopic composition of the C13-24 n-alkanes extracted from the high-grade uraniferous sample (delta(13)C = -28.0 to 32.6 parts per thousand) are heavier compared with the same compounds in a uranium-free sample (delta(13)C = 31.9 to 33.8 parts per thousand). It is proposed that the bitumen source was the isotopically light (delta(13)C = 35.8 to 30.2 parts per thousand) organic matter of the Upper Proterozoic host rocks that were pyrolyzed during intrusion of the Central Bohemian pluton. The C-13- depleted pyrolysates were mobilized from the innermost part of the contact-metamorphic aureole, accumulated in structural traps in less thermally influenced parts of the sedimentary complex and were later extracted by hydrothermal fluids. Bitumens at the Pribram deposit are younger than the main part of the uranium mineralization and were formed through water-washing and radiation-induced polymerization of both the gaseous and liquid pyrolysates. Direct evidence for pyrolysate reduction of uranium in the hydrothermal system is difficult to obtain as the chemical composition of the original organic fluid phase was modified during water-washing and radiolytic alteration. However, indirect evidence-e.g., higher O/C atomic ratios in uranium-free bitumens (0.1) relative to the Upper Proterozoic source rocks (0.02-0.05), isotopically very light carbon in associated whewellite (delta(13)C = 31.7 to -28.4 parts per thousand), and the striking absence of bitumens in the pre-uranium, hematite stage of the mineralization-indicates that oxidation of organic fluids may have contributed to lowering of aO(2) and uraninite precipitation.
Resumo:
We present a compact portable biosensor to measure arsenic As(III) concentrations in water using Escherichia coli bioreporter cells. Escherichia coli expresses green fluorescent protein in a linearly dependent manner as a function of the arsenic concentration (between 0 and 100 μg/L). The device accommodates a small polydimethylsiloxane microfluidic chip that holds the agarose-encapsulated bacteria, and a complete optical illumination/collection/detection system for automated quantitative fluorescence measurements. The device is capable of sampling water autonomously, controlling the whole measurement, storing and transmitting data over GSM networks. We demonstrate highly reproducible measurements of arsenic in drinking water at 10 and 50 μg/L within 100 and 80 min, respectively.
Resumo:
Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis.
Resumo:
Aging adults represent the fastest growing population segment in many countries. Physiological and metabolic changes in the aging process may alter how aging adults biologically respond to pollutants. In a controlled human toxicokinetic study (exposure chamber; 12 m³), aging volunteers (n=10; >58 years) were exposed to propylene glycol monomethyl ether (PGME, CAS no. 107-98-2) at 50 ppm for 6 h. The dose-dependent renal excretion of oxidative metabolites, conjugated and free PGME could potentially be altered by age. AIMS: (1) Compare PGME toxicokinetic profiles between aging and young volunteers (20-25 years) and gender; (2) test the predictive power of a compartmental toxicokinetic (TK) model developed for aging persons against urinary PGME concentrations found in this study. METHODS: Urine samples were collected before, during, and after the exposure. Urinary PGME was quantified by capillary GC/FID. RESULTS: Differences in urinary PGME profiles were not noted between genders but between age groups. Metabolic parameters had to be changed to fit the age adjusted TK model to the experimental results, implying a slower enzymatic pathway in the aging volunteers. For an appropriate exposure assessment, urinary total PGME should be quantified. CONCLUSION: Age is a factor that should be considered when biological limit values are developed.
Resumo:
The inhalation of airborne pollutants such as asbestos or silica is linked to inflammation of the lung, fibrosis and lung cancer. How the presence of pathogenic dust is recognised, and how chronic inflammatory diseases are triggered are poorly understood. We will se show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to IL-1b secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. In a model of asbestos inhalation, Nalp3_/_ mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory ''danger" receptor.
Resumo:
The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin-1beta secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate.) In a model of asbestos inhalation, Nalp3-/- mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory "danger" receptor
Resumo:
The adaptive function of melanin located in the integument is well known. Although pigments are also deposited in various internal organs, their function is unclear. A review of the literature revealed that 'internal melanin' protects against parasites, pollutants, low temperature, oxidative stress, hypoxemia and UV light, and is involved in the development and function of organs. Importantly, several studies have shown that the amount of melanin deposited on the external body surface is correlated with the amount located inside the body. This finding raises the possibility that internal melanin plays more important physiological roles in dark than light-colored individuals. Internal melanin and coloration may therefore not evolve independently. This further emphasizes the major role played by indirect selection in evolutionary processes.
Resumo:
Lake Geneva is one of the largest European lakes with a surface area of 580 km2. Its catchment area covers 7400 km2, of which approximately 20% is arable land. Monitoring campaigns have been carried out in 2004 and 2005 to determine the contamination of the lake by pesticides. The results highlight the widespread presence of herbicides in water, the measured concentrations for most substances remaining constant in 2004 and 2005. However, for some individual herbicides the concentrations increased drastically (e.g., the herbicide foramsulfuron). We assessed the environmental risk of the herbicides detected in the lake using water quality criteria recently determined for the Swiss environmental protection agency. Furthermore, we assessed the risk of herbicide mixtures, grouped based upon their mode of action. Generally, the risk estimated for all single substances is low, except for some sulfonylurea compounds. For these substances, the measured concentrations are higher than the predicted no-effect concentration. Impact on the flora of the lake can therefore not be excluded. When mixtures of pesticides with similar mode of action are taken into account, the risk remains lower than the mixture water quality criteria for all groups, but can reach as high as one third of this quality criteria. A further step would therefore be to assess the risk of the total pesticide mixture, including similar and dissimilar modes of action
Resumo:
Mineral dust aerosols recently collected at the high-altitude Jungfraujoch research station (46 degrees 33'51 `' N, 7 degrees 59'06 `' E; 3580 m a.s.l.) were compared to mineral dust deposited at the Colle Gnifetti glacier (45 degrees 52'50 `' N, 7 degrees 52'33 `' E; 4455 m a.s.l.) over the last millennium. Radiogenic isotope signatures and backward trajectories analyses indicate that major dust sources are situated in the north-central to north-western part of the Saharan desert. Less radiogenic Sr isotopic compositions of PM10 aerosols and of mineral particles deposited during periods of low dust transfer likely result from the enhancement of the background chemically-weathered Saharan source. Saharan dust mobilization and transport were relatively reduced during the second part of the Little Ice Age (ca. 1690-1870) except within the greatest Saharan dust event deposited around 1770. After ca. 1870, sustained dust deposition suggests that increased mineral dust transport over the Alps during the last century could be due to stronger spring/summer North Atlantic southwesterlies and drier winters in North Africa. On the other hand, increasing carbonaceous particle emissions from fossil fuel combustion combined to a higher lead enrichment factor point to concomitant anthropogenic sources of particulate pollutants reaching high-altitude European glaciers during the last century.
Resumo:
BACKGROUND: In contrast with established evidence linking high doses of ionizing radiation with childhood cancer, research on low-dose ionizing radiation and childhood cancer has produced inconsistent results. OBJECTIVE: We investigated the association between domestic radon exposure and childhood cancers, particularly leukemia and central nervous system (CNS) tumors. METHODS: We conducted a nationwide census-based cohort study including all children < 16 years of age living in Switzerland on 5 December 2000, the date of the 2000 census. Follow-up lasted until the date of diagnosis, death, emigration, a child's 16th birthday, or 31 December 2008. Domestic radon levels were estimated for each individual home address using a model developed and validated based on approximately 45,000 measurements taken throughout Switzerland. Data were analyzed with Cox proportional hazard models adjusted for child age, child sex, birth order, parents' socioeconomic status, environmental gamma radiation, and period effects. RESULTS: In total, 997 childhood cancer cases were included in the study. Compared with children exposed to a radon concentration below the median (< 77.7 Bq/m3), adjusted hazard ratios for children with exposure ≥ the 90th percentile (≥ 139.9 Bq/m3) were 0.93 (95% CI: 0.74, 1.16) for all cancers, 0.95 (95% CI: 0.63, 1.43) for all leukemias, 0.90 (95% CI: 0.56, 1.43) for acute lymphoblastic leukemia, and 1.05 (95% CI: 0.68, 1.61) for CNS tumors. CONCLUSIONS: We did not find evidence that domestic radon exposure is associated with childhood cancer, despite relatively high radon levels in Switzerland.
Resumo:
Dendritic cells (DCs) are leukocytes specialised in the uptake, processing, and presentation of antigen and fundamental in regulating both innate and adaptive immune functions. They are mainly localised at the interface between body surfaces and the environment, continuously scrutinising incoming antigen for the potential threat it may represent to the organism. In the respiratory tract, DCs constitute a tightly enmeshed network, with the most prominent populations localised in the epithelium of the conducting airways and lung parenchyma. Their unique localisation enables them to continuously assess inhaled antigen, either inducing tolerance to inoffensive substances, or initiating immunity against a potentially harmful pathogen. This immunological homeostasis requires stringent control mechanisms to protect the vital and fragile gaseous exchange barrier from unrestrained and damaging inflammation, or an exaggerated immune response to an innocuous allergen, such as in allergic asthma. During DC activation, there is upregulation of co-stimulatory molecules and maturation markers, enabling DC to activate naïve T cells. This activation is accompanied by chemokine and cytokine release that not only serves to amplify innate immune response, but also determines the type of effector T cell population generated. An increasing body of recent literature provides evidence that different DC subpopulations, such as myeloid DC (mDC) and plasmacytoid DC (pDC) in the lungs occupy a key position at the crossroads between tolerance and immunity. This review aims to provide the clinician and researcher with a summary of the latest insights into DC-mediated pulmonary immune regulation and its relevance for developing novel therapeutic strategies for various disease conditions such as infection, asthma, COPD, and fibrotic lung disease.
Resumo:
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Resumo:
A previous study has shown the possibility to identify methane (CH4 ) using headspace-GC-MS and quantify it with a stable isotope as internal standard. The main drawback of the GC-MS methods discussed in literature for CH4 measurement is the absence of a specific internal standard necessary to perform quantification. However, it becomes essential to develop a safer method to limit the manipulation of gaseous CH4 and to precisely control the injected amount of gas for spiking and calibration by comparison with external calibration. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate a labeled gas as an internal standard in a vial on the basis of the formation of CH4 by the reaction of Grignard reagent methylmagnesium chloride with deuterated water. This method allows precise measurement of CH4 concentrations in gaseous sample as well as in a solid or a liquid sample after a thermodesorption step in a headspace vial. A full accuracy profile validation of this method is then presented.