59 resultados para experimental animal welfare
Resumo:
Propionibacterium acnes is an important cause of orthopedic-implant-associated infections, for which the optimal treatment has not yet been determined. We investigated the activity of rifampin, alone and in combination, against planktonic and biofilm P. acnes in vitro and in a foreign-body infection model. The MIC and the minimal bactericidal concentration (MBC) were 0.007 and 4 μg/ml for rifampin, 1 and 4 μg/ml for daptomycin, 1 and 8 μg/ml for vancomycin, 1 and 2 μg/ml for levofloxacin, 0.03 and 16 μg/ml for penicillin G, 0.125 and 512 μg/ml for clindamycin, and 0.25 and 32 μg/ml for ceftriaxone. The P. acnes minimal biofilm eradication concentration (MBEC) was 16 μg/ml for rifampin; 32 μg/ml for penicillin G; 64 μg/ml for daptomycin and ceftriaxone; and ≥128 μg/ml for levofloxacin, vancomycin, and clindamycin. In the animal model, implants were infected by injection of 10⁹ CFU P. acnes in cages. Antimicrobial activity on P. acnes was investigated in the cage fluid (planktonic form) and on explanted cages (biofilm form). The cure rates were 4% for daptomycin, 17% for vancomycin, 0% for levofloxacin, and 36% for rifampin. Rifampin cured 63% of the infected cages in combination with daptomycin, 46% with vancomycin, and 25% with levofloxacin. While all tested antimicrobials showed good activity against planktonic P. acnes, for eradication of biofilms, rifampin was needed. In combination with rifampin, daptomycin showed higher cure rates than with vancomycin in this foreign-body infection model.
Resumo:
BACKGROUND AND OBJECTIVES: Experimental assessment of photodynamic therapy (PDT) for malignant pleural mesothelioma using a polyethylene glycol conjugate of meta-tetrahydroxyphenylchlorin (PEG-mTHPC). STUDY DESIGN/MATERIALS AND METHODS: (a) PDT was tested on H-meso-1 xenografts (652 nm laser light; fluence 10 J/cm(2); 0.93, 9.3, or 27.8 mg/kg of PEG-mTHPC; drug-light intervals 3-8 days). (b) Intraoperative PDT with similar treatment conditions was performed in the chest cavity of minipigs (n = 18) following extrapleural pneumonectomy (EPP) using an optical integrating balloon device combined with in situ light dosimetry. RESULTS: (a) PDT using PEG-mTHPC resulted in larger extent of tumor necrosis than in untreated tumors (P < or = 0.01) without causing damage to normal tissue. (b) Intraoperative PDT following EPP was well tolerated in 17 of 18 animals. Mean fluence and fluence rates measured at four sites of the chest cavity ranged from 10.2 +/- 0.2 to 13.2 +/- 2.3 J/cm(2) and 5.5 +/- 1.2 to 7.9 +/- 1.7 mW/cm(2) (mean +/- SD). Histology 3 months after light delivery revealed no PDT related tissue injury in all but one animal. CONCLUSIONS: PEG-mTHPC mediated PDT showed selective destruction of mesothelioma xenografts without causing damage to intrathoracic organs in pigs at similar treatment conditions. The light delivery system afforded regular light distribution to different parts of the chest cavity.
Resumo:
The murine model of infection with Leishmania major has allowed the demonstration in vivo of the importance CD4+ T cell subsets, distinguishable by the pattern of cytokines they produce, on the outcome of infectious diseases. Genetically determined resistance and susceptibility to infection with this parasite are the result of the development of Th1 and Th2 response, respectively. In this short paper, we present some results obtained in our group pertaining to the analysis of the mechanisms, operational during the early phase of this infection, responsible for the maturation of these functionally distinct CD4+ responses.
Resumo:
Cataract surgery is a common ocular surgical procedure consisting in the implantation of an artificial intraocular lens (IOL) to replace the ageing, dystrophic or damaged natural one. The management of postoperative ocular inflammation is a major challenge especially in the context of pre-existing uveitis. The association of the implanted IOL with a drug delivery system (DDS) allows the prolonged intraocular release of anti-inflammatory agents after surgery. Thus IOL-DDS represents an "all in one" strategy that simultaneously addresses both cataract and inflammation issues. Polymeric DDS loaded with two model anti-inflammatory drugs (triamcinolone acetonide (TA) and cyclosporine A (CsA)) were manufactured in a novel way and tested regarding their efficiency for the management of intraocular inflammation during the 3 months following surgery. The study involved an experimentally induced uveitis in rabbits. Experimental results showed that medicated DDS efficiently reduced ocular inflammation (decrease of protein concentration in aqueous humour, inflammatory cells in aqueous humour and clinical score). Additionally, more than 60% of the loading dose remained in the DDS at the end of the experiment, suggesting that the system could potentially cover longer inflammatory episodes. Thus, IOL-DDS were demonstrated to inhibit intraocular inflammation for at least 3 months after cataract surgery, representing a potential novel approach to cataract surgery in eyes with pre-existing uveitis.
Resumo:
A comparison of several physiological parameters of queens of Iridomyrmex humilis in experimental monogynous and polygynous colonies showed that queens in monogynous colonies became heavier, had more developed ovaries and laid about twice as many eggs. Workers in monogynous colonies were more attracted to queens, which therefore probably received more food. This may partially explain the higher weight and fecundity of queens in monogynous colonies of Iridomyrmex humilis and possibly other ant species. In polygynous colonies, queens differed greatly in their fecundity. These differences did not appear to be the result of a dominance hierarchy. These results are discussed from an evolutionary point of view. Two hypotheses of mutualism and colony level selection are proposed as an alternative to kin selection which is unlikely to be the exclusive selective influence in the evolution of polygyny either in I. humilis or in most other ant species.
Resumo:
PURPOSE: The aim of this study was to investigate the effect of a single intravitreal (i.v.t.) injection of vasoactive intestinal peptide (VIP) loaded in rhodamine-conjugated liposomes (VIP-Rh-Lip) on experimental autoimmune uveoretinitis (EAU). METHODS: An i.v.t. injection of VIP-Rh-Lip, saline, VIP, or empty-(E)-Rh-Lip was performed simultaneously, either 6 or 12 days after footpad immunization with retinal S-antigen in Lewis rats. Clinical and histologic scores were determined. Immunohistochemistry and cytokine quantification by multiplex enzyme-linked immunosorbent assay were performed in ocular tissues. Systemic immune response was determined at day 20 postimmunization by measuring proliferation and cytokine secretion of cells from inguinal lymph nodes (ILNs) draining the immunization site, specific delayed-type hypersensitivity (DTH), and the serum concentration of cytokines. Ocular and systemic biodistribution of VIP-Rh-Lip was studied in normal and EAU rats by immunofluorescence. RESULTS: The i.v.t. injection of VIP-Rh-Lip performed during the afferent, but not the efferent, phase of the disease reduced clinical EAU and protected against retinal damage. No effect was observed after saline, E-Rh-Lip, or VIP injection. VIP-Rh-Lip and VIP were detected in intraocular macrophages and in lymphoid organs. In VIP-Rh-Lip-treated eyes, macrophages expressed transforming growth factor-beta2, low levels of major histocompatibility complex class II, and nitric oxide synthase-2. T-cells showed activated caspase-3 with the preservation of photoreceptors. Intraocular levels of interleukin (IL)-2, interferon-gamma (IFN-gamma), IL-17, IL-4, GRO/KC, and CCL5 were reduced with increased IL-13. At the systemic level, treatment reduced retinal soluble autoantigen lymphocyte proliferation, decreased IL-2, and increased IL-10 in ILN cells, and diminished specific DTH and serum concentration of IL-12 and IFN-gamma. CONCLUSIONS: An i.v.t. injection of VIP-Rh-Lip, performed during the afferent stage of immune response, reduced EAU pathology through the immunomodulation of intraocular macrophages and deviant stimulation of T-cells in ILN. Thus, the encapsulation of VIP within liposomes appears as an effective strategy to deliver VIP into the eye and is an efficient means of the prevention of EAU severity.
Resumo:
Enterococcal implant-associated infections are difficult to treat because antibiotics generally lack activity against enterococcal biofilms. We investigated fosfomycin, rifampin, and their combinations against planktonic and adherent Enterococcus faecalis (ATCC 19433) in vitro and in a foreign-body infection model. The MIC/MBClog values were 32/>512 μg/ml for fosfomycin, 4/>64 μg/ml for rifampin, 1/2 μg/ml for ampicillin, 2/>256 μg/ml for linezolid, 16/32 μg/ml for gentamicin, 1/>64 μg/ml for vancomycin, and 1/5 μg/ml for daptomycin. In time-kill studies, fosfomycin was bactericidal at 8× and 16× MIC, but regrowth of resistant strains occurred after 24 h. With the exception of gentamicin, no complete inhibition of growth-related heat production was observed with other antimicrobials on early (3 h) or mature (24 h) biofilms. In the animal model, fosfomycin alone or in combination with daptomycin reduced planktonic counts by ≈4 log10 CFU/ml below the levels before treatment. Fosfomycin cleared planktonic bacteria from 74% of cage fluids (i.e., no growth in aspirated fluid) and eradicated biofilm bacteria from 43% of cages (i.e., no growth from removed cages). In combination with gentamicin, fosfomycin cleared 77% and cured 58% of cages; in combination with vancomycin, fosfomycin cleared 33% and cured 18% of cages; in combination with daptomycin, fosfomycin cleared 75% and cured 17% of cages. Rifampin showed no activity on planktonic or adherent E. faecalis, whereas in combination with daptomycin it cured 17% and with fosfomycin it cured 25% of cages. Emergence of fosfomycin resistance was not observed in vivo. In conclusion, fosfomycin showed activity against planktonic and adherent E. faecalis. Its role against enterococcal biofilms should be further investigated, especially in combination with rifampin and/or daptomycin treatment.
Resumo:
BACKGROUND: Endothelin-1 is an endothelium-derived potent vasoconstrictor peptide of 21 amino acids. To establish reference values in different models of hypertension and in human subjects an assay for plasma immunoreactive endothelin-1 (ET-1) was optimized. METHODS: ET-1 is extracted by acetone from 1 mL of plasma and subjected to a sensitive enzyme-linked immunosorbent assay. RESULTS: The detection limit for plasma ET-1 is 0.05 fmol/mL. Mean recoveries of the 1, 2, 5, and 10 fmol of ET-1 added to 1 mL of plasma were 66%, 75%, 85%, and 92%, respectively. Within- and between-assay coefficients of variation were < or =12% and < or =10%, respectively. Assay accuracy was demonstrated by consistent recoveries of added ET-1 over the entire physiologic range of plasma concentrations and by the linearity of ET-1 concentrations measured in serially diluted plasma extracts (r = 0.99). No ET-1 was detected when albumin buffer was extracted instead of plasma. Using this method, we found increased ET-1 levels in plasma of three experimental rat models of hypertension: stroke prone spontaneously hypertensive rats (SP-SHR), deoxycorticosterone acetate-salt hypertensive rats, and one kidney-one clip hypertensive rats. In contrast, plasma ET-1 levels of SHR were half those of normotensive Wistar rats. In two kidney-one clip hypertensive rats, plasma ET-1 concentrations were not different from those found in sham-operated control rats. Plasma ET-1 concentrations of 37 healthy men were 0.85 +/- 0.26 fmol/ml (mean +/- SD). CONCLUSIONS: The present assay reliably measures ET-1 levels in rat and human plasma. It allows to discriminate between different forms of hypertension with high or low circulating levels of ET-1.
Resumo:
The potential pathogenicity of selected (potentially) probiotic and clinical isolates of Lactobacillus rhamnosus and Lactobacillus paracasei was investigated in a rat model of experimental endocarditis. In addition, adhesion properties of the lactobacilli for fibrinogen, fibronectin, collagen and laminin, as well as the killing activity of the platelet-microbicidal proteins fibrinopeptide A (FP-A) and connective tissue activating peptide 3 (CTAP-3), were assessed. The 90 % infective dose (ID(90)) of the L. rhamnosus endocarditis isolates varied between 10(6) and 10(7) c.f.u., whereas four of the six (potentially) probiotic L. rhamnosus isolates showed an ID(90) that was at least 10-fold higher (10(8) c.f.u.) (P<0.001). In contrast, the two other probiotic L. rhamnosus isolates exhibited an ID(90) (10(6) and 10(7) c.f.u.) comparable to the ID(90) of the clinical isolates of this species investigated (P>0.05). Importantly, these two probiotic isolates shared the same fluorescent amplified fragment length polymorphism cluster type as the clinical isolate showing the lowest ID(90) (10(6) c.f.u.). L. paracasei tended to have a lower infectivity than L. rhamnosus (ID(90) of 10(7) to > or =10(8) c.f.u.). All isolates had comparable bacterial counts in cardiac vegetations (P>0.05). Except for one L. paracasei strain adhering to all substrates, all tested lactobacilli adhered only weakly or not at all. The platelet peptide FP-A did not show any microbicidal activity against the tested lactobacilli, whereas CTAP-3 killed the majority of the isolates. In general, these results indicate that probiotic lactobacilli display a lower infectivity in experimental endocarditis compared with true endocarditis pathogens. However, the difference in infectivity between L. rhamnosus endocarditis and (potentially) probiotic isolates could not be explained by differences in adherence or platelet microbicidal protein susceptibility. Other disease-promoting factors may exist in these organisms and warrant further investigation.
Resumo:
Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia
Resumo:
Quinupristin-dalfopristin (Q-D) is an injectable streptogramin active against most gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). In experimental endocarditis, however, Q-D was less efficacious against MRSA isolates constitutively resistant to macrolide-lincosamide-streptogram B (C-MLS(B)) than against MLS(B)-susceptible isolates. To circumvent this problem, we used the checkerboard method to screen drug combinations that would increase the efficacy of Q-D against such bacteria. beta-Lactams consistently exhibited additive or synergistic activity with Q-D. Glycopeptides, quinolones, and aminoglycosides were indifferent. No drugs were antagonistic. The positive Q-D-beta-lactam interaction was independent of MLS(B) or beta-lactam resistance. Moreover, addition of Q-D at one-fourth the MIC to flucloxacillin-containing plates decreased the flucloxacillin MIC for MRSA from 500 to 1,000 mg/liter to 30 to 60 mg/liter. Yet, Q-D-beta-lactam combinations were not synergistic in bactericidal tests. Rats with aortic vegetations were infected with two C-MLS(B)-resistant MRSA isolates (isolates AW7 and P8) and were treated for 3 or 5 days with drug dosages simulating the following treatments in humans: (i) Q-D at 7 mg/kg two times a day (b.i.d.) (a relatively low dosage purposely used to help detect positive drug interactions), (ii) cefamandole at constant levels in serum of 30 mg/liter, (iii) cefepime at 2 g b.i.d., (iv) Q-D combined with either cefamandole or cefepime. Any of the drugs used alone resulted in treatment failure. In contrast, Q-D plus either cefamandole or cefepime significantly decreased valve infection compared to the levels of infection for both untreated controls and those that received monotherapy (P < 0.05). Importantly, Q-D prevented the growth of highly beta-lactam-resistant MRSA in vivo. The mechanism of this beneficial drug interaction is unknown. However, Q-D-beta-lactam combinations might be useful for the treatment of complicated infections caused by multiple organisms, including MRSA.
Resumo:
Staphylococcus aureus is a major cause of serious infections in humans and animals and a vaccine is becoming a necessity. Lactococcus lactis is a non-pathogenic bacterium that can be used as a vector for the delivery of antigens. We investigated the ability of non-living L. lactis heterologously expressing S. aureus clumping factor A (ClfA) and fibronectin-binding protein A (FnbpA), alone or together, to elicit an immune response in rats and protect them from S. aureus experimental infective endocarditis (IE). L. lactis ClfA was used for immunization against S. aureus Newman (expressing ClfA but not FnbpA), while L. lactis ClfA, L. lactis FnbpA, as well as L. lactis ClfA/FnbpA, were used against S. aureus P8 (expressing ClfA and FnbpA). Vaccination of rats with L. lactis ClfA elicited antibodies that inhibited binding of S. aureus Newman to fibrinogen, triggered the production of IL-17A and conferred protection to 13/19 (68%) of the animals from IE (P<0.05). Immunization with L. lactis ClfA, L. lactis FnbpA or L. lactis ClfA/FnbpA also produced antibodies against the target proteins, but these did not prevent binding of S. aureus P8 to fibrinogen or fibronectin and did not protect animals against S. aureus P8 IE. Moreover, immunization with constructs containing FnbpA did not increase IL-17A production. These results indicate that L. lactis is a valuable antigen delivery system able to elicit efficient humoral and cellular responses. However, the most appropriate antigens affording protection against S. aureus IE are yet to be elucidated.
Resumo:
Corticosterone is an important hormone of the stress response that regulates physiological processes and modifies animal behavior. While it positively acts on locomotor activity, it may negatively affect reproduction and social activity. This suggests that corticosterone may promote behaviors that increase survival at the cost of reproduction. In this study, we experimentally investigate the link between corticosterone levels and survival in adult common lizards (Lacerta vivipara) by comparing corticosterone-treated with placebo-treated lizards. We experimentally show that corticosterone enhances energy expenditure, daily activity, food intake, and it modifies the behavioral time budget. Enhanced appetite of corticosterone-treated individuals compensated for increased energy expenditure and corticosterone-treated males showed increased survival. This suggests that corticosterone may promote behaviors that reduce stress and it shows that corticosterone per se does not reduce but directly or indirectly increases longer-term survival. This suggests that the production of corticosterone as a response to a stressor may be an adaptive mechanism that even controls survival.