126 resultados para analog-digital conversion (ADC)
Resumo:
We present dual-wavelength Digital Holographic Microscopy (DHM) measurements on a certified 8.9 nm high Chromium thin step sample and demonstrate sub-nanometer axial accuracy. We introduce a modified DHM Reference Calibrated Hologram (RCH) reconstruction algorithm taking into account amplitude contributions. By combining this with a temporal averaging procedure and a specific dual-wavelength DHM arrangement, it is shown that specimen topography can be measured with an accuracy, defined as the axial standard deviation, reduced to at least 0.9 nm. Indeed, it is reported that averaging each of the two wavefronts recorded with real-time dual-wavelength DHM can provide up to 30% spatial noise reduction for the given configuration, thanks to their non-correlated nature. ©2008 COPYRIGHT SPIE
Resumo:
PURPOSE: As compared with natural tumor peptide sequences, carefully selected analog peptides may be more immunogenic and thus better suited for vaccination. However, T cells in vivo activated by such altered analog peptides may not necessarily be tumor specific because sequence and structure of peptide analogs differ from corresponding natural peptides. EXPERIMENTAL DESIGN: Three melanoma patients were immunized with a Melan-A peptide analog that binds more strongly to HLA-A*0201 and is more immunogenic than the natural sequence. This peptide was injected together with a saponin-based adjuvant, followed by surgical removal of lymph node(s) draining the site of vaccination. RESULTS: Ex vivo analysis of vaccine site draining lymph nodes revealed antigen-specific CD8+ T cells, which had differentiated to memory cells. In vitro, these cells showed accelerated proliferation upon peptide stimulation. Nearly all (16 of 17) of Melan-A-specific CD8+ T-cell clones generated from these lymph nodes efficiently killed melanoma cells. CONCLUSIONS: Patient immunization with the analog peptide leads to in vivo activation of T cells that were specific for the natural tumor antigen, demonstrating the usefulness of the analog peptide for melanoma immunotherapy.
Resumo:
Abstract We introduce a label-free technology based on digital holographic microscopy (DHM) with applicability for screening by imaging, and we demonstrate its capability for cytotoxicity assessment using mammalian living cells. For this first high content screening compatible application, we automatized a digital holographic microscope for image acquisition of cells using commercially available 96-well plates. Data generated through both label-free DHM imaging and fluorescence-based methods were in good agreement for cell viability identification and a Z'-factor close to 0.9 was determined, validating the robustness of DHM assay for phenotypic screening. Further, an excellent correlation was obtained between experimental cytotoxicity dose-response curves and known IC values for different toxic compounds. For comparable results, DHM has the major advantages of being label free and close to an order of magnitude faster than automated standard fluorescence microscopy.
Resumo:
OBJECTIVE: To detect anatomical differences in areas related to motor processing between patients with motor conversion disorder (CD) and controls. METHODS: T1-weighted 3T brain MRI data of 15 patients suffering from motor CD (nine with hemiparesis and six with paraparesis) and 25 age- and gender-matched healthy volunteers were compared using voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) analysis. RESULTS: We report significant cortical thickness (VBCT) increases in the bilateral premotor cortex of hemiparetic patients relative to controls and a trend towards increased grey matter volume (VBM) in the same region. Regression analyses showed a non-significant positive correlation between cortical thickness changes and symptom severity as well as illness duration in CD patients. CONCLUSIONS: Cortical thickness increases in premotor cortical areas of patients with hemiparetic CD provide evidence for altered brain structure in a condition with presumed normal brain anatomy. These may either represent premorbid vulnerability or a plasticity phenomenon related to the disease with the trends towards correlations with clinical variables supporting the latter.
Resumo:
Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.
Resumo:
Colony social organization in the fire ant Solenopsis invicta appears to be under strong genetic control. In the invasive USA range, polygyny (multiple queens per colony) is marked by the presence of the Gp-9(b) allele in most of a colony's workers, whereas monogyny (single queen per colony) is associated with the exclusive occurrence of the Gp-9(B) allele. Ross and Keller, Behav Ecol Sociobiol 51:287-295 (2002) experimentally manipulated social organization by cross-fostering queens into colonies of the alternate form, thereby changing adult worker Gp-9 genotype frequencies over time. Although these authors showed that social behavior switched predictably when the frequency of b-bearing adult workers crossed a threshold of 5-10%, the possibility that queen effects caused the conversions could not be excluded entirely. We addressed this problem by fostering polygyne brood into queenright monogyne colonies. All such treatment colonies switched social organization to become polygyne, coincident with their proportions of b-bearing workers exceeding 12%. Our results support the conclusion that polygyny in S. invicta is induced by a minimum frequency of colony workers carrying the b allele, and further confirm that its expression is independent of queen genotype or history, worker genotypes at genes not linked to Gp-9, and colony genetic diversity.
Resumo:
Secretory component (SC) represents the soluble ectodomain of the polymeric Ig receptor, a membrane protein that transports mucosal Abs across epithelial cells. In the protease-rich environment of the intestine, SC is thought to stabilize the associated IgA by unestablished molecular mechanisms. To address this question, we reconstituted SC-IgA complexes in vitro by incubating dimeric IgA (IgAd) with either recombinant human SC (rSC) or SC isolated from human colostral milk (SCm). Both complexes exhibited an identical degree of covalency when exposed to redox agents, peptidyl disulfide isomerase, and temperature changes. In cross-competition experiments, 50% inhibition of binding to IgAd was achieved at approximately 10 nM SC competitor. Western blot analysis of IgAd digested with intestinal washes indicated that the alpha-chain in IgAd was primarily split into a 40-kDa species, a phenomenon delayed in rSC- or SCm-IgAd complexes. In the same assay, either of the SCs was resistant to degradation only if complexed with IgAd. In contrast, the kappa light chain was not digested at all, suggesting that the F(ab')2 region was left intact. Accordingly, IgAd and SC-IgAd digestion products retained functionality as indicated by Ag reactivity in ELISA. Size exclusion chromatography under native conditions of digested IgAd and rSC-IgAd demonstrates that SC exerts its protective role in secretory IgA by delaying cleavage in the hinge/Fc region of the alpha-chain, not by holding together degraded fragments. The function of integral secretory IgA and F(ab')2 is discussed in terms of mucosal immune defenses.