99 resultados para Vitamines K
Resumo:
The mechanisms of vascular calcifications in chronic renal failure are complex. Apart for clotting factors, vitamin K-dependent proteins include matrix Gla protein. Glutamic acid residues in matrix Gla protein are carboxylated by vitamin K-dependent gamma-carboxylase, which enables it to inhibit calcification. The purpose of this review is to discuss available evidence implicating vitamin K as a modifiable risk factor in the pathogenesis of vascular calcification in renal diseases.
Resumo:
FXYD3 (Mat-8) proteins are regulators of Na,K-ATPase. In normal tissue, FXYD3 is mainly expressed in stomach and colon, but it is also overexpressed in cancer cells, suggesting a role in tumorogenesis. We show that FXYD3 silencing has no effect on cell proliferation but promotes cell apoptosis and prevents cell differentiation of human colon adenocarcinoma cells (Caco-2), which is reflected by a reduction in alkaline phosphatase and villin expression, a change in several other differentiation markers, and a decrease in transepithelial resistance. Inhibition of cell differentiation in FXYD3-deficient cells is accompanied by an increase in the apparent Na+ and K+ affinities of Na,K-ATPase, reflecting the absence of Na,K-pump regulation by FXYD3. In addition, we observe a decrease in the maximal Na,K-ATPase activity due to a decrease in its turnover number, which correlates with a change in Na,K-ATPase isozyme expression that is characteristic of cancer cells. Overall, our results suggest an important role of FXYD3 in cell differentiation of Caco-2 cells. One possibility is that FXYD3 silencing prevents proper regulation of Na,K-ATPase, which leads to perturbation of cellular Na+ and K+ homeostasis and changes in the expression of Na,K-ATPase isozymes, whose functional properties are incompatible with Caco-2 cell differentiation.
Resumo:
In vivo exposure to chronic hypoxia is considered to be a cause of myocardial dysfunction, thereby representing a deleterious condition, but repeated aeration episodes may exert some cardioprotection. We investigated the possible role of ATP-sensitive potassium channels in these mechanisms. First, rats (n = 8/group) were exposed for 14 days to either chronic hypoxia (CH; 10% O(2)) or chronic hypoxia with one episode/day of 1-hr normoxic aeration (CH+A), with normoxia (N) as the control. Second, isolated hearts were Langendorff perfused under hypoxia (10% O(2), 30 min) and reoxygenated (94% O(2), 30 min) with or without 3 microM glibenclamide (nonselective K(+)(ATP) channel-blocker) or 100 microM diazoxide (selective mitochondrial K(+)(ATP) channel-opener). Blood gasses, hemoglobin concentration, and plasma malondialdehyde were similar in CH and CH+A and in both different from normoxic (P < 0.01), body weight gain and plasma nitrate/nitrite were higher in CH+A than CH (P < 0.01), whereas apoptosis (number of TUNEL-positive nuclei) was less in CH+A than CH (P < 0.05). During in vitro hypoxia, the efficiency (ratio of ATP production/pressure x rate product) was the same in all groups and diazoxide had no measurable effects on myocardial performance, whereas glibenclamide increased end-diastolic pressure more in N and CH than in CH+A hearts (P < 0.05). During reoxgenation, efficiency was markedly less in CH with respect to N and CH+A (P < 0.0001), and ratex pressure product remained lower in CH than N and CH+A hearts (P < 0.001), but glibenclamide or diazoxide abolished this difference. Glibenclamide, but not diazoxide, decreased vascular resistance in N and CH (P < 0.005 and < 0.001) without changes in CH+A. We hypothesize that cardioprotection in chronically hypoxic hearts derive from cell depolarization by sarcolemmal K(+)(ATP) blockade or from preservation of oxidative phosphorylation efficiency (ATP turnover/myocardial performance) by mitochondrial K(+)(ATP) opening. Therefore K(+)(ATP) channels are involved in the deleterious effects of chronic hypoxia and in the cardioprotection elicited when chronic hypoxia is interrupted with short normoxic aeration episodes.
Resumo:
Volcanic flows and tuffs interbedded with ammonite-bearing sediments directly correlatable with the stratotype section of the Bajocian stage have been dated for the first time within the Caucasus area. Three samples, each from a different section, allowed separation of well-preserved brown hornblende; these are considered reliable geochronometers in a region where subsequent volcanic activity occurred. The dated separates are V139: a volcanic layer probably near the base, V142 another layer near the top of the Lower Bajocian substage; V141 a boulder from a latest Bajocian volcanic conglomerate. From bottom to top, apparent ages at 173.5 +/- 2.6, 164.8 +/- 2.5 and 167.1 +/- 1.9 Ma (analytical uncertainty, 95% confidence level) respectively, can be calculated. The consistency of the results is obtained if the dated boulder is interpreted as derived from an underlying layer, The Bajocian-Bathonian boundary is much younger than commonly accepted and younger than 164 Ma.
Resumo:
The Miocene Paine Granite in the Torres del Paine Intrusive Complex, southern Chile, is an extraordinary example of an upper crustal mafic and granitic intrusion. The granite intruded as a series of three sheets, each one underplating the previous sheet along the top of the basal Paine Mafic Complex. High-precision U/Pb geochronology on single zircons using isotope dilution-thermal ionization mass spectrometry yields distinct ages of 12.59 +/- 0.02 Ma and 12.50 +/- 0.02 Ma, respectively, for the first and last sheet of the laccolith. This age relationship is consistent with field observations. The zircon ages define a time frame of 90 +/- 40 k.y. for the emplacement of a >2000-m-thick granite laccollith. These precise U-Pb zircon ages permit identification of the pulses in a 20 k.y. range. The data obtained for the Paine Granite fill the gap between 100 k.y. and 100-1000 yr pulses described in the literature for crustal magma chambers.
Resumo:
In 2003, the Swiss guidelines to prevent vitamin K deficiency bleeding (VKDB) were adapted. As two oral doses (2 mg, hour/day 4) of mixed micellar VK preparation had failed to abolish late VKDB, a third dose (week 4) was introduced. This report summarizes the new guidelines acceptance by Swiss pediatricians and the results of a prospective 6-year surveillance to study their influence on the incidence of VKDB. The new guidelines acceptance by Swiss pediatricians was evaluated by a questionnaire sent to all pediatricians of the Swiss Society of Paediatrics. With the help of the Swiss Paediatric Surveillance Unit, the incidence of VKDB was monitored prospectively from July 1, 2005 until June 30, 2011. Over a 6-year period (458,184 live births), there was one case of early and four cases of late VKDB. Overall incidence was 1.09/10(5) (95 % confidence intervals (CI) 0.4-2.6). Late VKDB incidence was 0.87/10(5) (95 % CI 0.24-2.24). All four infants with late VKDB had an undiagnosed cholestasis at the time of bleeding; parents of 3/4 had refused VK prophylaxis, and in 1/4, the third VK dose had been forgotten. Compared with historical control who had received only two oral doses of mixed micellar VK (18 cases for 475,372 live births), the incidence of late VKDB was significantly lower with three oral doses (Chi(2),Yates correction, P = 0.007). CONCLUSION: VKDB prophylaxis with 3 × 2 mg oral doses of mixed micellar VK seems to prevent adequately infants from VKDB. The main risk factors for VKDB in breast-fed infants are parental VK prophylaxis refusal or an unknown cholestasis.
Resumo:
Plasma membrane expression of the Na,K-ATPase requires assembly of its α- and β-subunits. Using a novel labeling technique to identify Na,K-ATPase partner proteins, we detected an interaction between the Na,K-ATPase α-subunit and the coat protein, β-COP, a component of the COP-I complex. When expressed in the absence of the Na,K-ATPase β-subunit, the Na,K-ATPase α-subunit interacts with β-COP, is retained in the endoplasmic reticulum, and is targeted for degradation. In the presence of the Na,K-ATPase β-subunit, the α-subunit does not interact with β-COP and traffics to the plasma membrane. Pulse-chase experiments demonstrate that in cells expressing both the Na,K-ATPase α- and β-subunits, newly synthesized α-subunit associates with β-COP immediately after its synthesis but that this interaction does not constitute an obligate intermediate in the assembly of the α- and β-subunits to form the pump holoenzyme. The interaction with β-COP was reduced by mutating a dibasic motif at Lys(54) in the Na,K-ATPase α-subunit. This mutant α-subunit is not retained in the endoplasmic reticulum and reaches the plasma membrane, even in the absence of Na,K-ATPase β-subunit expression. Although the Lys(54) α-subunit reaches the cell surface without need for β-subunit assembly, it is only functional as an ion-transporting ATPase in the presence of the β-subunit.
Resumo:
The eclogite facies assemblage K-feldspar-jadeite-quartz in metagranites and metapelites from the Sesia-Lanzo Zone (Western Alps, Italy) records the equilibration pressure by dilution of the reaction jadeite + quartz = albite. The metapelites show partial transformation from a pre-Alpine assemblage of garnet (Alm(63)Prp(26)Grs(10))-K-feldspar-plagioclase-biotite +/- sillimanite to the Eo-Alpine high-pressure assemblage garnet (Alm(50)Prp(14)Grs(35))-jadeite (Jd(80-97)Di(0-4)Hd(0-8)Acm(0-7))=zoisite-phengite. Plagioclase is replaced by jadeite-zoisite-kyanite-K-feldspar-quartz and biotite is replaced by garnet-phengite or omphacite-kyanite-phengite. Equilibrium was attained only in local domains in the metapelites and therefore the K-feldspar-jadeite-quartz (KJQ) barometer was applied only to the plagioclase pseudomorphs and K-feldspar domains. The albite content of K-feldspar ranges from 4 to 11 mol% in less equilibrated assemblages from Val Savenca and from 4 to 7 mol% in the partially equilibrated samples from Monte Mucrone and the equilibrated samples from Montestrutto and Tavagnasco. Thermodynamic calculations on the stability of the assemblage K-feldspar-jadeite-quartz using available mixing data for K-feldspar and pyroxene indicate pressures of 15-21 kbar (+/- 1.6-1.9 kbar) at 550 +/- 50 degrees C. This barometer yields direct pressure estimates in high-pressure rocks where pressures are seldom otherwise fixed, although it is sensitive to analytical precision and the choice of thermodynamic mixing model for K-feldspar. Moreover, the KJQ barometer is independent of the ratio P-H2O/P-T. The inferred limiting a(H2O) for the assemblage jadeite-kyanite in the metapelites from Val Savenca is low and varies from 0.2 to 0.6.
Resumo:
Hyperinsulinemia increases lactate release by various organs and tissues. Whereas it has been shown that aerobic glycolysis is linked to Na+-K+-ATPase activity, we hypothesized that stimulation by insulin of skeletal muscle Na+-K+-ATPase is responsible for increased muscle lactate production. To test this hypothesis, we assessed muscle lactate release in healthy volunteers from the [13C]lactate concentration in the effluent dialysates of microdialysis probes inserted into the tibialis anterior muscles on both sides and infused with solutions containing 5 mmol/l [U-13C]glucose. On one side, the microdialysis probe was intermittently infused with the same solution additioned with 2.10(-5) M ouabain. In the basal state, [13C]lactate concentration in the dialysate was not affected by ouabain. During a euglycemic-hyperinsulinemic clamp, [13C]lactate concentration increased by 135% in the dialysate without ouabain, and this stimulation was nearly entirely reversed by ouabain (56% inhibition compared with values in the dialysate collected from the contralateral probe). These data indicate that insulin stimulates muscle lactate release by activating Na+-K+-ATPase in healthy humans.
Resumo:
Deccan intertrappean sediments in central India are generally considered as terrestrial deposits of Maastrichtian age, but the Cretaceous-Tertiary (K-T) position is still unknown. Here we report the discovery of the K-T transition, a marine incursion and environmental changes preserved within the intertrappean sediments at Jhilmili, Chhindwara District, Madhya Pradesh. Integrative biostratigraphic, sedimentologic, mineralogic and chemostratigraphic analyses reveal the basal Danian in the intertrappean sediments between lower and upper trap basalts that regionally correspond to C29r and the C29R/C29N transition, respectively. Intertrappean deposition occurred in predominantly terrestrial semi-humid to and environments. But a short aquatic interval of fresh water ponds and lakes followed by shallow coastal marine conditions with brackish marine ostracods and early Danian zone P1a planktic foraminifera mark this interval very close to the K-T boundary. This marine incursion marks the existence of a nearby seaway, probably extending inland from the west through the Narmada and Tapti rift valleys. The Jhilmili results thus identify the K-T boundary near the end of the main phase of Deccan eruptions and indicate that a major seaway extended at least 800 km across India. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Mineralogical, K-Ar, Rb-Sr and stable isotope analyses have been carried out on K-white micas from Helvetic Malm limestones in order to examine their evolution during very low- to low-grade Alpine metamorphism, associated with intense ductile deformation. Metamorphic temperatures were estimated al approximately 300-degrees-C from stable isotopes (quartz-calcite thermometry), occurrence of chloritoid, and `'epizonal'' illite crystallinity index. K-white micas consist of variable mixtures of 2M, phengite and muscovite, as revealed by detailed X-ray diffraction analyses using peak decomposition of the (060, 331) spectra. K-Ar apparent ages display a strong grain-size dependence in which mainly fine-grained size fractions (< 2 mum) record Alpine ages (37-15 Ma). However, these ages provide a relative rather than an absolute chronology of the diachronous Alpine metamorphic evolution of the Helvetic nappes. The resetting of the K-Ar isotopic system of K-white micas to Alpine metamorphic conditions reflects an apparent combination of crystallization/recrystallization and radiogenic Ar-40 diffusion loss. The oxygen isotope compositions of micas (+ 15 to + 22 parts per thousand) are intermediate between detrital and O-18-enriched values expected for micas neoformed within an abundant marine carbonate matrix. No isotopic equilibrium has been reached between calcite and micas. The variable depletion of hydrogen isotope compositions (- 126 to - 82 parts per thousand) is influenced by the interaction with organic matter under closed-system conditions. Organic matter, if not removed, may also represent a serious source of error in K-Ar age determination, by introducing radiogenic Ar-40 contamination. Sr-87/Sr-86 isotope ratios of micas range from 0.70879 to 0.70902 with one outlier at 0.71794. The low values reflect Sr exchange with calcite occurring during crystallization/recrystallization of micas under closed-system conditions.
Resumo:
Short- and long-term effect of oxytocin on Na+ transport and Na-K-ATPase biosynthesis in the toad bladder, and the potential interaction of this hormone with aldosterone have been studied, leading to the following observations. An early Na+ transport response (oxytocin, 50 mU/ml) peaked at 10-15 min of hormone addition. At maximal stimulation a three- to fourfold increase in Na+ transport was observed, a sustained Na+ transport response (about two-fold control base line) was observed as long as the hormone was present in the medium and for up to 20 h of incubation. Pretreatment for 30 min with actinomycin D (2 micrograms/ml) did not inhibit the early response, but significantly impaired the sustained response, suggesting that de novo protein synthesis was required. The simultaneous addition of the two hormones led within 60 min to a marked potentiation of the action on Na+ transport. This synergism could be mimicked by exogenous cyclic adenosine monophosphate (cAMP). Oxytocin alone (18 h exposure, 50 mU/ml) increased the relative rate of synthesis of both alpha and beta subunits of Na-K-ATPase (1.9- and 1.6-fold, respectively; P less than 0.05), whereas aldosterone (80 nM) increased the relative rate of synthesis of the same subunits (2.6- and 2.2-fold, respectively; P less than 0.02). Finally, in contrast to what was observed at the physiological level, the interaction of oxytocin and aldosterone did not lead to a similar potentiation at the biochemical level, i.e., induction of Na-K-ATPase biosynthesis (2.7- and 2.9-fold, for alpha and beta subunits, respectively; P less than 0.025).