125 resultados para Staphylococcal nuclease
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of nosocomial infections worldwide. To differentiate reliably among S. aureus isolates, we recently developed double locus sequence typing (DLST) based on the analysis of partial sequences of clfB and spa genes. In the present study, we evaluated the usefulness of DLST for epidemiological investigations of MRSA by routinely typing 1242 strains isolated in Western Switzerland. Additionally, particular local and international collections were typed by pulsed field gel electrophoresis (PFGE) and DLST to check the compatibility of DLST with the results obtained by PFGE, and for international comparisons. Using DLST, we identified the major MRSA clones of Western Switzerland, and demonstrated the close relationship between local and international clones. The congruence of 88% between the major PFGE and DLST clones indicated that our results obtained by DLST were compatible with earlier results obtained by PFGE. DLST could thus easily be incorporated in a routine surveillance procedure. In addition, the unambiguous definition of DLST types makes this method more suitable than PFGE for long-term epidemiological surveillance. Finally, the comparison of the results obtained by DLST, multilocus sequence typing, PFGE, Staphylococcal cassette chromosome mec typing and the detection of Panton-Valentine leukocidin genes indicated that no typing scheme should be used on its own. It is only the combination of data from different methods that gives the best chance of describing precisely the epidemiology and phylogeny of MRSA.
Resumo:
OBJECTIVES: Laboratory detection of vancomycin-intermediate Staphylococcus aureus (VISA) and their heterogeneous VISA (hVISA) precursors is difficult. Thus, it is possible that vancomycin failures against supposedly vancomycin-susceptible S. aureus are due to undiagnosed VISA or hVISA. We tested this hypothesis in experimental endocarditis.¦METHODS: Rats with aortic valve infection due to the vancomycin-susceptible (MIC 2 mg/L), methicillin-resistant S. aureus M1V2 were treated for 2 days with doses of vancomycin that mimicked the pharmacokinetics seen in humans following intravenous administration of 1 g of the drug every 12 h. Half of the treated animals were killed 8 h after treatment arrest and half 3 days thereafter. Population analyses were done directly on vegetation homogenates or after one subculture in drug-free medium to mimic standard diagnostic procedures.¦RESULTS: Vancomycin cured 14 of 26 animals (54%; P<0.05 versus controls) after 2 days of treatment. When vegetation homogenates were plated directly on vancomycin-containing plates, 6 of 13 rats killed 8 h after treatment arrest had positive cultures, 1 of which harboured hVISA. Likewise, 6 of 13 rats killed 3 days thereafter had positive valve cultures, 5 of which harboured hVISA. However, one subculture of vegetations in drug-free broth was enough to revert all the hVISA phenotypes to the susceptible pattern of the parent. Thus, vancomycin selected for hVISA during therapy of experimental endocarditis due to vancomycin-susceptible S. aureus. These hVISA were associated with vancomycin failure. The hVISA phenotype persisted in vivo, even after vancomycin arrest, but was missed in vitro after a single passage of the vegetation homogenate on drug-free medium.¦CONCLUSIONS: hVISA might escape detection in clinical samples if they are subcultured before susceptibility tests.
Resumo:
Cell-free translation of total RNA isolated from vaccinia virus-infected cells late in infection results in a complex mixture of polypeptides. A monospecific antibody directed against one of the major structural proteins of the virus particle immunoprecipitated a single polypeptide with a molecular weight of 11,000 (11K) from this mixture. Immunoprecipitation was therefore used to identify the structural polypeptide among the in vitro translation products of RNA purified by hybridization selection to restriction fragments of the vaccinia virus genome. This allowed us to map the mRNA coding for the 11K polypeptide to the extreme left-hand end of the HindIII E fragment. Detailed transcriptional mapping of this region of the genome by nuclease S1 analysis revealed the presence of a late RNA transcribed from the rightward-reading strand. Its 5' end mapped at ca. 130 base pairs to the left of the HindIII site at the junction between the HindIII F and E fragments. The map position of this RNA coincided precisely with the map position of the late message coding for the 11K polypeptide.
Resumo:
To determine the value of immunoscintigraphy (IS) with antigranulocyte monoclonal antibodies (Mab) in the diagnosis of subacute or chronic infection of hip prostheses, we prospectively studied 57 patients (23 women and 34 men; age 29-92 years, mean 72.7 years) sent to our institution in the past 6 years for clinical suspicion of septic loosening of a hip prosthesis. Nineteen patients had bilateral prostheses and one of them was studied twice. A total of 78 prostheses were examined. All patients had three-phase bone scans followed by IS with technetium-99m antigranulocyte Mab BW 250/183. Intervals between bone scans and IS varied from 2 days to 4 weeks. Final diagnosis was assessed by culture in 48 cases (articular puncture or intraoperative sampling) and by clinical follow-up of at least 8 months in 30 cases. Twelve prostheses were considered septic and 66 non-septic. The overall sensitivity and specificity were 92% and 64% respectively for bone scans, 67% and 75% for IS and 67% and 84% for both modalities together. In three cases, IS was doubtful and the final clinical diagnosis was negative for infection. False-positive results were observed in the presence of massive loosening of the prosthesis or in association with metaplastic peri-articular bone formation. In three of the four false-negative results, infection was proven only after enrichment of the culture, and the bacterium was Staphylococcus epidermidis. In 12/33 (36%) positive bone scans IS allowed the diagnosis of infection to be excluded. Overall accuracy of both modalities together was 81% and the negative predictive value was 93%, which compares favourably with the results reported for other non-invasive methods.
Resumo:
In order to characterize the gene encoding the ligand binding (1(st); alpha) chain of the human IFN-gamma receptor, two overlapping cosmid clones were analyzed. The gene spans over 25 kilobases (kb) of the genomic DNA and has seven exons. The extracellular domain is encoded by exons 1 to 5 and by part of exon 6. The transmembrane region is also encoded by exon 6. Exon 7 encodes the intracellular domain and the 3' untranslated portion. The gene was located on chromosome 6q23.1, as determined by in situ hybridization. The 4 kb region upstream (5') of the gene was sequenced and analyzed for promoter activity. No consensus-matching TATA or CAAT boxes in the 5' region were found. Potential binding sites for Sp1, AP-1, AP-2, and CREB nuclear factors were identified. Compatible with the presence of the Sp1/AP-2 sites and the lack of TATA box, S1-nuclease mapping experiments showed multiple transcription initiation sites. Promoter activity of the 5' flanking region was analyzed with two different reporter genes: the Escherichia coli chloramphenicol acetyltransferase and human growth hormone. The smallest 5' region of the gene that still had full promoter activity was 692 base pairs in length. In addition, we found sequences belonging to the oldest family of Alu repeats, 2 - 3 kb upstream of the gene, which could be useful for genetic studies.
Resumo:
This study analyzed the development of bacterial endocarditis following dental extraction in rats with periodontal disease. Periodontal disease was produced in rats by tying silk ligatures around the two maxillary first molars, and placing the animals on a high sucrose diet. Sterile aortic valve vegetations were produced by means of a transaortic catheter, and 24 hours later the maxillary first molars were extracted. The animals were killed 72 hours after the extractions. In rats with periodontal disease induced for 10 and 14 weeks, extractions resulted in an incidence of bacterial endocarditis of 24% and 50%, respectively, most of which were due to streptococcal species (two were caused by Staphylococcus [corrected] aureus). The difference, though not statistically significant (p = 0.10, chi 2 with Yates correction), shows a trend toward increased incidence of endocarditis with increasing severity of periodontal disease. This model demonstrates that one can reliably induce bacterial endocarditis after dental extractions in rats with periodontal disease.
Resumo:
The therapeutic efficacy of BAL9141 (formerly Ro 63-9141), a novel cephalosporin with broad in vitro activity that also has activity against methicillin-resistant Staphylococcus aureus (MRSA), was investigated in rats with experimental endocarditis. The test organisms were homogeneously methicillin-resistant S. aureus strain COL transformed with the penicillinase-encoding plasmid pI524 (COL Bla+) and homogeneously methicillin-resistant, penicillinase-producing isolate P8-Hom, selected by serial exposure of parent strain P8 to methicillin. The MICs of BAL9141 for these organisms (2 mg/liter) were low, and BAL9141was bactericidal in time-kill curve studies after 24 h of exposure to either two, four, or eight times the MIC. Rats with experimental endocarditis were treated in a three-arm study with a continuous infusion of BAL5788 (formerly Ro 65-5788), a carbamate prodrug of BAL9141, or with amoxicillin-clavulanate or vancomycin. The rats were administered BAL9141 to obtain steady-state target levels of 20, 10, and 5 mg of per liter or were administered either 1.2 g of amoxicillin-clavulanate (ratio 5:1) every 6 h or 1 g of vancomycin every 12 h at changing flow rates to simulate the pharmacokinetics produced in humans by intermittent intravenous treatment. Treatment was started 12 h after bacterial challenge and lasted for 3 days. BAL9141 was successful in the treatment of experimental endocarditis due to either MRSA isolate COL Bla+ or MRSA isolate P8-Hom at the three targeted steady-state concentrations and sterilized >90% of cardiac vegetations (P < 0.005 versus controls; P < 0.05 versus amoxicillin-clavulanate and vancomycin treatment groups). These promising in vivo results with BAL9141 correlated with the high affinity of the drug for PBP 2a and its stability to penicillinase hydrolysis observed in vitro.
Resumo:
In gram-negative bacteria, the outer membrane lipopolysaccharide is the main component triggering cytokine release from peripheral blood mononuclear cells (PBMCs). In gram-positive bacteria, purified walls also induce cytokine release, but stimulation requires 100 times more material. Gram-positive walls are complex megamolecules reassembling distinct structures. Only some of them might be inflammatory, whereas others are not. Teichoic acids (TA) are an important portion (> or =50%) of gram-positive walls. TA directly interact with C3b of complement and the cellular receptor for platelet-activating factor. However, their contribution to wall-induced cytokine-release by PBMCs has not been studied in much detail. In contrast, their membrane-bound lipoteichoic acids (LTA) counterparts were shown to trigger inflammation and synergize with peptidoglycan (PGN) for releasing nitric oxide (NO). This raised the question as to whether TA are also inflammatory. We determined the release of tumor necrosis factor (TNF) by PBMCs exposed to a variety of TA-rich and TA-free wall fragments from Streptococcus pneumoniae and Staphylococcus aureus. TA-rich walls from both organisms induced measurable TNF release at concentrations of 1 microg/ml. Removal of wall-attached TA did not alter this activity. Moreover, purified pneumococcal and staphylococcal TA did not trigger TNF release at concentrations as high as > or =100 microg/ml. In contrast, purified LTA triggered TNF release at 1 microg/ml. PGN-stem peptide oligomers lacking TA or amino-sugars were highly active and triggered TNF release at concentrations as low as 0.01 microg/ml (P. A. Majcherczyk, H. Langen, et al., J. Biol. Chem. 274:12537-12543,1999). Thus, although TA is an important part of gram-positive walls, it did not participate to the TNF-releasing activity of PGN.
Resumo:
The natural history and treatment of experimental endocarditis due to heterogeneous and homogeneous methicillin-resistant Staphylococcus epidermidis was investigated. Amoxicillin/clavulanate or vancomycin were administered for 3 days via a computerized pump to mimic human drug kinetics in animals. After challenge with the minimum inoculum producing 90% of infections (ID90), bacteria in the vegetations grew logarithmically for 16 h. Then, bacterial densities stabilized (at approximately 10(8) cfu/g) and growth rates sharply declined. Both regimens cured > or = 60% of endocarditis (due to heterogeneous or homogeneous bacteria) when started 12-16 h after infection, although the bacterial densities in the vegetations had increased by 20 times in between. In contrast, treatment started after 24 h failed in most animals, while bacterial densities had not increased any more. Thus, while both regimens were equivalent, the therapeutic outcome was best predicted by growth rates in the vegetations, not by bacterial densities. These observations highlight the importance of phenotypic tolerance developing in vivo.
Resumo:
Adherence to fibrinogen and fibronectin plays a crucial role in Staphylococcus aureus experimental endocarditis. Previous genetic studies have shown that infection and carriage isolates do not systematically differ in their virulence-related genes, including genes conferring adherence, such as clfA and fnbA. We set out to determine the range of adherence phenotypes in carriage isolates of S. aureus, to compare the adherence of these isolates to the adherence of infection isolates, and to determine the relationship between adherence and infectivity in a rat model of experimental endocarditis. A total of 133 healthy carriage isolates were screened for in vitro adherence to fibrinogen and fibronectin, and 30 isolates were randomly chosen for further investigation. These 30 isolates were compared to 30 infective endocarditis isolates and 30 blood culture isolates. The infectivities of the carriage isolates, which displayed either extremely low or high adherence to fibrinogen and fibronectin, were tested using a rat model of experimental endocarditis. The levels of adherence to both fibrinogen and fibronectin were very similar for isolates from healthy carriers and members of the two groups of infection isolates. All three groups of isolates showed a wide range of adherence to fibrinogen and fibronectin. Moreover, the carriage isolates that showed minimal adherence and the carriage isolates that showed strong adherence had the same infectivity in experimental endocarditis. Adherence was proven to be important for pathogenesis in experimental endocarditis, but even the least adherent carriage strains had the ability to induce infection. We discuss the roles of differential gene expression, human host factors, and gene redundancy in resolving this apparent paradox.
Resumo:
Staphylococcus aureus is a highly successful pathogen responsible of a wide variety of diseases, from minor skin infection to life-threatening sepsis or infective endocarditis, as well as food poisoning and toxic shock syndrome. This heterogeneity of infections and the ability of S. aureus to develop antibiotic-resistance to virtually any available drugs reflect its extraordinary capacity to adapt and survive in a great variety of environments. The pathogenesis of S. aureus infection involves a wide range of cell wall-associated adhesins and extracellular toxins that promote host colonization and invasion. In addition, S. aureus is extremely well equipped with regulatory systems that sense environmental conditions and respond by fine tuning the expression of metabolic and virulence determinants. Surface adhesins referred to MSCRAMMs - for Microbial Surface Component Recognizing Adherence Matrix Molecules - mediate binding to the host extracellular matrix or serum components, including fibrinogen, fibronectin, collagen and elastin, and promote tissue colonization and invasion. Major MSCRAMMs include a family of surface-attached proteins covalently bound to the cell wall peptidoglycan via a conserved LPXTG motif. Genomic analyses indicate that S. aureus contain up to 22 LPXTG surface proteins, which could potentially act individually or in synergy to promote infection. In the first part of this study we determined the range of adherence phenotypes to fibrinogen and fibronectin among 30 carriage isolates of S. aureus and compared it to the adherence phenotypes of 30 infective endocarditis and 30 blood culture isolates. Overall there were great variations in in vitro adherence, but no differences were observed between carriage and infection strains. We further determined the relation between in vitro adherence and in vivo infectivity in a rat model of experimental endocarditis, using 4 isolates that displayed either extremely low or high adherence phenotypes. Unexpectedly, no differences were observed between the in vivo infectivity of isolates that were poorly and highly adherent in vitro. We concluded that the natural variability of in vitro adherence to fibrinogen and fibronectin did not correlate with in vivo infectivity, and thus that pathogenic differences between various strains might only be expressed in in vivo conditions, but not in vitro. Therefore, considering the importance of adhesins expression for infection, direct measurement of those adhesins present on the bacterial surface were made by proteomic approach. 5 In the second series of experiments we assessed the physical presence of the LPXTG species at the staphylococcal surface, as measured at various time points during growth in different culture media. S. aureus Newman was grown in either tryptic soy broth (TSB) or in Roswell Park Memorial Institute (RPMI) culture medium, and samples were removed from early exponential growth phase to late stationary phase. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa) and clumping factor A (ClfA). Peptides of surface proteins were recovered by "trypsin-shaving" of live bacteria, and semi-quantitative proteomic analysis was performed by tandem liquid-chromatography and mass-spectrometry (LC-MS). We also determined in parallel the mRNA expression by microarrays analysis, as well as the phenotypic adherence of the bacteria to fibrinogen in vitro. The surface proteome was highly complex and contained numerous proteins theoretically not belonging to the bacterial envelope, including ribosomal proteins and metabolic enzymes. Sixteen of the 21 known LPXTG species were detected, but were differentially expressed. As expected, 9 known agr-regulated proteins (e.g. including Spa, FnBPA, ClfA, IsdA, IsdB, SasH, SasD, SasG and FmtB) increased up to the late exponential growth phase, and were abrogated in agr-negative mutants. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr negative mutant, while all other LPXTG proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in in vitro fibrinogen adherence tests during late growth (24h), whereas it remained poorly detected by proteomics. Differential expression was also detected in iron-rich TSB versus iron-poor RPMI. Proteins from the iron-regulated surface determinant (isd) system, including IsdA, IsdB and IsdH were barely expressed in iron-rich TSB, whereas they increased their expression by >10 time in iron-poor RPMI. We conclude that semi-quantitative proteomic analysis of specific protein species is feasible in S. aureus and that proteomic, transcriptomic and adherence phenotypes demonstrated differential profiles in S. aureus. Furthermore, peptide signatures released by trypsin shaving suggested differential protein domain exposures in various environments, which might be relevant for antiadhesins vaccines. A comprehensive understanding of the S. aureus physiology should integrate all these approaches.
Resumo:
We describe 3 patients with left-sided staphylococcal endocarditis (1 with methicillin-susceptible Staphylococcus aureus [MSSA] prosthetic aortic valve endocarditis and 2 with methicillin-resistant S. aureus [MRSA] native-valve endocarditis) who were successfully treated with high-dose intravenous daptomycin (10 mg/kg/day) plus fosfomycin (2 g every 6 h) for 6 weeks. This combination was tested in vitro against 7 MSSA, 5 MRSA, and 2 intermediately glycopeptide-resistant S. aureus isolates and proved to be synergistic against 11 (79%) strains and bactericidal against 8 (57%) strains. This combination deserves further clinical study.