179 resultados para Robust epipolar-geometry estimation
Resumo:
Laboratory safety data are routinely collected in clinical studies for safety monitoring and assessment. We have developed a truncated robust multivariate outlier detection method for identifying subjects with clinically relevant abnormal laboratory measurements. The proposed method can be applied to historical clinical data to establish a multivariate decision boundary that can then be used for future clinical trial laboratory safety data monitoring and assessment. Simulations demonstrate that the proposed method has the ability to detect relevant outliers while automatically excluding irrelevant outliers. Two examples from actual clinical studies are used to illustrate the use of this method for identifying clinically relevant outliers.
Resumo:
We examined drivers of article citations using 776 articles that were published from 1990-2012 in a broad-based and high-impact social sciences journal, The Leadership Quarterly. These articles had 1,191 unique authors having published and received in total (at the time of their most recent article published in our dataset) 16,817 articles and 284,777 citations, respectively. Our models explained 66.6% of the variance in citations and showed that quantitative, review, method, and theory articles were significantly more cited than were qualitative articles or agent-based simulations. As concerns quantitative articles, which constituted the majority of the sample, our model explained 80.3% of the variance in citations; some methods (e.g., use of SEM) and designs (e.g., meta-analysis), as well as theoretical approaches (e.g., use of transformational, charismatic, or visionary type-leadership theories) predicted higher article citations. Regarding the statistical conclusion validity of quantitative articles, articles having endogeneity threats received significantly fewer citations than did those using a more robust design or an estimation procedure that ensured correct causal estimation. We make several general recommendations on how to improve research practice and article citations.
Resumo:
The objective of the EU funded integrated project "ACuteTox" is to develop a strategy in which general cytotoxicity, together with organ-specific endpoints and biokinetic features, are taken into consideration in the in vitro prediction of oral acute systemic toxicity. With regard to the nervous system, the effects of 23 reference chemicals were tested with approximately 50 endpoints, using a neuronal cell line, primary neuronal cell cultures, brain slices and aggregated brain cell cultures. Comparison of the in vitro neurotoxicity data with general cytotoxicity data generated in a non-neuronal cell line and with in vivo data such as acute human lethal blood concentration, revealed that GABA(A) receptor function, acetylcholine esterase activity, cell membrane potential, glucose uptake, total RNA expression and altered gene expression of NF-H, GFAP, MBP, HSP32 and caspase-3 were the best endpoints to use for further testing with 36 additional chemicals. The results of the second analysis showed that no single neuronal endpoint could give a perfect improvement in the in vitro-in vivo correlation, indicating that several specific endpoints need to be analysed and combined with biokinetic data to obtain the best correlation with in vivo acute toxicity.
Resumo:
The MDRD (Modification of diet in renal disease) equation enables glomerular filtration rate (GFR) estimation from serum creatinine only. Thus, the laboratory can report an estimated GFR (eGFR) with each serum creatinine assessment, increasing therefore the recognition of renal failure. Predictive performance of MDRD equation is better for GFR < 60 ml/min/1,73 m2. A normal or near-normal renal function is often underestimated by this equation. Overall, MDRD provides more reliable estimations of renal function than the Cockcroft-Gault (C-G) formula, but both lack precision. MDRD is not superior to C-G for drug dosing. Being adjusted to 1,73 m2, MDRD eGFR has to be back adjusted to the patient's body surface area for drug dosing. Besides, C-G has the advantage of a greater simplicity and a longer use.
Resumo:
In this paper, we propose a new paradigm to carry outthe registration task with a dense deformation fieldderived from the optical flow model and the activecontour method. The proposed framework merges differenttasks such as segmentation, regularization, incorporationof prior knowledge and registration into a singleframework. The active contour model is at the core of ourframework even if it is used in a different way than thestandard approaches. Indeed, active contours are awell-known technique for image segmentation. Thistechnique consists in finding the curve which minimizesan energy functional designed to be minimal when thecurve has reached the object contours. That way, we getaccurate and smooth segmentation results. So far, theactive contour model has been used to segment objectslying in images from boundary-based, region-based orshape-based information. Our registration technique willprofit of all these families of active contours todetermine a dense deformation field defined on the wholeimage. A well-suited application of our model is theatlas registration in medical imaging which consists inautomatically delineating anatomical structures. Wepresent results on 2D synthetic images to show theperformances of our non rigid deformation field based ona natural registration term. We also present registrationresults on real 3D medical data with a large spaceoccupying tumor substantially deforming surroundingstructures, which constitutes a high challenging problem.
Resumo:
International conservation organisations have identified priority areas for biodiversity conservation. These global-scale prioritisations affect the distribution of funds for conservation interventions. As each organisation has a different focus, each prioritisation scheme is determined by different decision criteria and the resultant priority areas vary considerably. However, little is known about how the priority areas will respond to the impacts of climate change. In this paper, we examined the robustness of eight global-scale prioritisations to climate change under various climate predictions from seven global circulation models. We developed a novel metric of the climate stability for 803 ecoregions based on a recently introduced method to estimate the overlap of climate envelopes. The relationships between the decision criteria and the robustness of the global prioritisation schemes were statistically examined. We found that decision criteria related to level of endemism and landscape fragmentation were strongly correlated with areas predicted to be robust to a changing climate. Hence, policies that prioritise intact areas due to the likely cost efficiency, and assumptions related to the potential to mitigate the impacts of climate change, require further examination. Our findings will help determine where additional management is required to enable biodiversity to adapt to the impacts of climate change
Resumo:
A new formula for glomerular filtration rate estimation in pediatric population from 2 to 18 years has been developed by the University Unit of Pediatric Nephrology. This Quadratic formula, accessible online, allows pediatricians to adjust drug dosage and/or follow-up renal function more precisely and in an easy manner.
Resumo:
Optimal robust M-estimates of a multidimensional parameter are described using Hampel's infinitesimal approach. The optimal estimates are derived by minimizing a measure of efficiency under the model, subject to a bounded measure of infinitesimal robustness. To this purpose we define measures of efficiency and infinitesimal sensitivity based on the Hellinger distance.We show that these two measures coincide with similar ones defined by Yohai using the Kullback-Leibler divergence, and therefore the corresponding optimal estimates coincide too.We also give an example where we fit a negative binomial distribution to a real dataset of "days of stay in hospital" using the optimal robust estimates.
Resumo:
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer.
Resumo:
Over thirty years ago, Leamer (1983) - among many others - expressed doubts about the quality and usefulness of empirical analyses for the economic profession by stating that "hardly anyone takes data analyses seriously. Or perhaps more accurately, hardly anyone takes anyone else's data analyses seriously" (p.37). Improvements in data quality, more robust estimation methods and the evolution of better research designs seem to make that assertion no longer justifiable (see Angrist and Pischke (2010) for a recent response to Leamer's essay). The economic profes- sion and policy makers alike often rely on empirical evidence as a means to investigate policy relevant questions. The approach of using scientifically rigorous and systematic evidence to identify policies and programs that are capable of improving policy-relevant outcomes is known under the increasingly popular notion of evidence-based policy. Evidence-based economic policy often relies on randomized or quasi-natural experiments in order to identify causal effects of policies. These can require relatively strong assumptions or raise concerns of external validity. In the context of this thesis, potential concerns are for example endogeneity of policy reforms with respect to the business cycle in the first chapter, the trade-off between precision and bias in the regression-discontinuity setting in chapter 2 or non-representativeness of the sample due to self-selection in chapter 3. While the identification strategies are very useful to gain insights into the causal effects of specific policy questions, transforming the evidence into concrete policy conclusions can be challenging. Policy develop- ment should therefore rely on the systematic evidence of a whole body of research on a specific policy question rather than on a single analysis. In this sense, this thesis cannot and should not be viewed as a comprehensive analysis of specific policy issues but rather as a first step towards a better understanding of certain aspects of a policy question. The thesis applies new and innovative identification strategies to policy-relevant and topical questions in the fields of labor economics and behavioral environmental economics. Each chapter relies on a different identification strategy. In the first chapter, we employ a difference- in-differences approach to exploit the quasi-experimental change in the entitlement of the max- imum unemployment benefit duration to identify the medium-run effects of reduced benefit durations on post-unemployment outcomes. Shortening benefit duration carries a double- dividend: It generates fiscal benefits without deteriorating the quality of job-matches. On the contrary, shortened benefit durations improve medium-run earnings and employment possibly through containing the negative effects of skill depreciation or stigmatization. While the first chapter provides only indirect evidence on the underlying behavioral channels, in the second chapter I develop a novel approach that allows to learn about the relative impor- tance of the two key margins of job search - reservation wage choice and search effort. In the framework of a standard non-stationary job search model, I show how the exit rate from un- employment can be decomposed in a way that is informative on reservation wage movements over the unemployment spell. The empirical analysis relies on a sharp discontinuity in unem- ployment benefit entitlement, which can be exploited in a regression-discontinuity approach to identify the effects of extended benefit durations on unemployment and survivor functions. I find evidence that calls for an important role of reservation wage choices for job search be- havior. This can have direct implications for the optimal design of unemployment insurance policies. The third chapter - while thematically detached from the other chapters - addresses one of the major policy challenges of the 21st century: climate change and resource consumption. Many governments have recently put energy efficiency on top of their agendas. While pricing instru- ments aimed at regulating the energy demand have often been found to be short-lived and difficult to enforce politically, the focus of energy conservation programs has shifted towards behavioral approaches - such as provision of information or social norm feedback. The third chapter describes a randomized controlled field experiment in which we discuss the effective- ness of different types of feedback on residential electricity consumption. We find that detailed and real-time feedback caused persistent electricity reductions on the order of 3 to 5 % of daily electricity consumption. Also social norm information can generate substantial electricity sav- ings when designed appropriately. The findings suggest that behavioral approaches constitute effective and relatively cheap way of improving residential energy-efficiency.
Resumo:
The clinical demand for a device to monitor Blood Pressure (BP) in ambulatory scenarios with minimal use of inflation cuffs is increasing. Based on the so-called Pulse Wave Velocity (PWV) principle, this paper introduces and evaluates a novel concept of BP monitor that can be fully integrated within a chest sensor. After a preliminary calibration, the sensor provides non-occlusive beat-by-beat estimations of Mean Arterial Pressure (MAP) by measuring the Pulse Transit Time (PTT) of arterial pressure pulses travelling from the ascending aorta towards the subcutaneous vasculature of the chest. In a cohort of 15 healthy male subjects, a total of 462 simultaneous readings consisting of reference MAP and chest PTT were acquired. Each subject was recorded at three different days: D, D+3 and D+14. Overall, the implemented protocol induced MAP values to range from 80 ± 6 mmHg in baseline, to 107 ± 9 mmHg during isometric handgrip maneuvers. Agreement between reference and chest-sensor MAP values was tested by using intraclass correlation coefficient (ICC = 0.78) and Bland-Altman analysis (mean error = 0.7 mmHg, standard deviation = 5.1 mmHg). The cumulative percentage of MAP values provided by the chest sensor falling within a range of ±5 mmHg compared to reference MAP readings was of 70%, within ±10 mmHg was of 91%, and within ±15mmHg was of 98%. These results point at the fact that the chest sensor complies with the British Hypertension Society (BHS) requirements of Grade A BP monitors, when applied to MAP readings. Grade A performance was maintained even two weeks after having performed the initial subject-dependent calibration. In conclusion, this paper introduces a sensor and a calibration strategy to perform MAP measurements at the chest. The encouraging performance of the presented technique paves the way towards an ambulatory-compliant, continuous and non-occlusive BP monitoring system.
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
Biochemical systems are commonly modelled by systems of ordinary differential equations (ODEs). A particular class of such models called S-systems have recently gained popularity in biochemical system modelling. The parameters of an S-system are usually estimated from time-course profiles. However, finding these estimates is a difficult computational problem. Moreover, although several methods have been recently proposed to solve this problem for ideal profiles, relatively little progress has been reported for noisy profiles. We describe a special feature of a Newton-flow optimisation problem associated with S-system parameter estimation. This enables us to significantly reduce the search space, and also lends itself to parameter estimation for noisy data. We illustrate the applicability of our method by applying it to noisy time-course data synthetically produced from previously published 4- and 30-dimensional S-systems. In addition, we propose an extension of our method that allows the detection of network topologies for small S-systems. We introduce a new method for estimating S-system parameters from time-course profiles. We show that the performance of this method compares favorably with competing methods for ideal profiles, and that it also allows the determination of parameters for noisy profiles.