Optimal robust estimates using the Hellinger distance


Autoria(s): Marazzi Alfio; Yohai Victor J.
Data(s)

2010

Resumo

Optimal robust M-estimates of a multidimensional parameter are described using Hampel's infinitesimal approach. The optimal estimates are derived by minimizing a measure of efficiency under the model, subject to a bounded measure of infinitesimal robustness. To this purpose we define measures of efficiency and infinitesimal sensitivity based on the Hellinger distance.We show that these two measures coincide with similar ones defined by Yohai using the Kullback-Leibler divergence, and therefore the corresponding optimal estimates coincide too.We also give an example where we fit a negative binomial distribution to a real dataset of "days of stay in hospital" using the optimal robust estimates.

Identificador

http://serval.unil.ch/?id=serval:BIB_53BD96FE77EA

isbn:1862-5347

doi:10.1007/s11634-010-0061-8

http://www.springerlink.com/content/5831681t86g11054/

Idioma(s)

en

Direitos

info:eu-repo/semantics/openAccess

Fonte

Advances in Data Analysis and Classification, vol. 4, no. 2-3, pp. 169-179

Tipo

info:eu-repo/semantics/article

article