56 resultados para Life sciences literature
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. These receptors stimulate transcription after activation by their cognate ligand and binding to the promoter of target genes. In this review, we discuss how fatty acids affect PPAR functions in the cell. We first describe the structural features of the ligand binding domains of PPARs, as defined by crystallographic analyses. We then present the ligand-binding characteristics of each of the three PPARs (alpha, beta/delta, gamma) and relate ligand activation to various cellular processes: (i) fatty acid catabolism and modulation of the inflammatory response for PPARalpha, (ii) embryo implantation, cell proliferation and apoptosis for PPARbeta, and (iii) adipocytic differentiation, monocytic differentiation and cell cycle withdrawal for PPARgamma. Finally, we present possible cross-talk between the PPAR pathway and different endocrine routes within the cell, including the thyroid hormone and retinoid pathways.
Resumo:
Ethyl glucuronide (EtG) is a minor and direct metabolite of ethanol. EtG is incorporated into the growing hair allowing retrospective investigation of chronic alcohol abuse. In this study, we report the development and the validation of a method using gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS) for the quantification of EtG in hair. EtG was extracted from about 30 mg of hair by aqueous incubation and purified by solid-phase extraction (SPE) using mixed mode extraction cartridges followed by derivation with perfluoropentanoic anhydride (PFPA). The analysis was performed in the selected reaction monitoring (SRM) mode using the transitions m/z 347-->163 (for the quantification) and m/z 347-->119 (for the identification) for EtG, and m/z 352-->163 for EtG-d(5) used as internal standard. For validation, we prepared quality controls (QC) using hair samples taken post mortem from 2 subjects with a known history of alcoholism. These samples were confirmed by a proficiency test with 7 participating laboratories. The assay linearity of EtG was confirmed over the range from 8.4 to 259.4 pg/mg hair, with a coefficient of determination (r(2)) above 0.999. The limit of detection (LOD) was estimated with 3.0 pg/mg. The lower limit of quantification (LLOQ) of the method was fixed at 8.4 pg/mg. Repeatability and intermediate precision (relative standard deviation, RSD%), tested at 4 QC levels, were less than 13.2%. The analytical method was applied to several hair samples obtained from autopsy cases with a history of alcoholism and/or lesions caused by alcohol. EtG concentrations in hair ranged from 60 to 820 pg/mg hair.
Resumo:
A simple method using liquid chromatography-linear ion trap mass spectrometry for simultaneous determination of testosterone glucuronide (TG), testosterone sulfate (TS), epitestosterone glucuronide (EG) and epitestosterone sulfate (ES) in urine samples was developed. For validation purposes, a urine containing no detectable amount of TG, TS and EG was selected and fortified with steroid conjugate standards. Quantification was performed using deuterated testosterone conjugates to correct for ion suppression/enhancement during ESI. Assay validation was performed in terms of lower limit of detection (1-3ng/mL), recovery (89-101%), intraday precision (2.0-6.8%), interday precision (3.4-9.6%) and accuracy (101-103%). Application of the method to short-term stability testing of urine samples at temperature ranging from 4 to 37 degrees C during a time-storage of a week lead to the conclusion that addition of sodium azide (10mg/mL) is required for preservation of the analytes.
Resumo:
The model plant Arabidopsis thaliana was studied for the search of new metabolites involved in wound signalling. Diverse LC approaches were considered in terms of efficiency and analysis time and a 7-min gradient on a UPLC-TOF-MS system with a short column was chosen for metabolite fingerprinting. This screening step was designed to allow the comparison of a high number of samples over a wide range of time points after stress induction in positive and negative ionisation modes. Thanks to data treatment, clear discrimination was obtained, providing lists of potential stress-induced ions. In a second step, the fingerprinting conditions were transferred to longer column, providing a higher peak capacity able to demonstrate the presence of isomers among the highlighted compounds.
Resumo:
In vertebrates, different isoforms of fibroblast growth factor 2 (FGF2) exist, which differ by their N-terminal extension. They show different localization and expression levels and exert distinct biological effects. Nevertheless, genetic inactivation of all FGF2 isoforms in the mouse results in only mild phenotypes. Here, we analyzed mouse FGF2, and show that, as in the human, mouse FGF2 contains CTG-initiated high molecular-weight (HMW) isoforms, which contain a nuclear localization signal, and which mediate localization of this isoform to the nucleus. Using green fluorescent protein-FGF2 fusions, we furthermore observed, that C-terminal deletions disable nuclear localization of the short low-molecular-weight (LMW) 18-kDa isoform. This loss of specific localization is accompanied by a loss in heparin binding. We therefore suggest that, first, localization of mouse FGF2 is comparable to that in other vertebrates and, second, FGF2 contains at least two sequences important for nuclear localization, a nuclear localization sequence at the N terminus which is only contained in the HMW isoform, and another sequence at the C terminus, which is only required for localization of the LMW 18-kDa isoform.
Resumo:
AIM: Alpha1-adrenergic receptors (alpha1-ARs) are classified into three subtypes: alpha1A-AR, alpha1B-AR, and alpha1D-AR. Triple disruption of alpha1A-AR, alpha1B-AR, and alpha1D-AR genes results in hypotension and produces no contractile response of the thoracic aorta to noradrenalin. Presently, we characterized vascular contractility against other vasoconstrictors, such as potassium, prostaglandin F2alpha (PGF(2alpha)) and 5-hydroxytryptamine (5-HT), in alpha1A-AR, alpha1B-AR, and alpha1D-AR triple knockout (alpha1-AR triple KO) mice. MAIN METHODS: The contractile responses to the stimulation with vasoconstrictors were studied using isolated thoracic aorta. KEY FINDINGS: As a result, the phasic and tonic contraction induced by a high concentration of potassium (20 mM) was enhanced in the isolated thoracic aorta of alpha1-AR triple KO mice compared with that of wild-type (WT) mice. In addition, vascular responses to PGF(2alpha) and 5-HT were also enhanced in the isolated thoracic aorta of alpha1-AR triple KO mice compared with WT mice. Similar to in vitro findings with isolated thoracic aorta, in vivo pressor responses to PGF(2alpha) were enhanced in alpha1-AR triple KO mice. Real-time reverse transcription-polymerase chain reaction analysis and western blot analysis indicate that gene expression of the 5-hydroxytryptamine 2A (5-HT(2A)) receptor was up-regulated in the thoracic aorta of alpha1-AR triple KO mice while the prostaglandin F2alpha receptor (FP) was unchanged. SIGNIFICANCE: These results suggest that loss of alpha1-ARs can lead to enhancement of vascular responsiveness to the vasoconstrictors and may imply that alpha1-ARs and the subsequent signaling regulate the vascular responsiveness to other stimulations such as depolarization, 5-HT and PGF(2alpha).
Resumo:
The past decade has seen the emergence of next-generation sequencing (NGS) technologies, which have revolutionized the field of human molecular genetics. With NGS, significant portions of the human genome can now be assessed by direct sequence analysis, highlighting normal and pathological variants of our DNA. Recent advances have also allowed the sequencing of complete genomes, by a method referred to as whole genome sequencing (WGS). In this work, we review the use of WGS in medical genetics, with specific emphasis on the benefits and the disadvantages of this technique for detecting genomic alterations leading to Mendelian human diseases and to cancer.
Resumo:
Background: Treatment of NSCLC has been revolutionized in recent years with the introduction of several targeted therapies for selected genetically altered subtypes of NSCLC. A better understanding of molecular characteristics of NSCLC, which features common drug targets, may identify new therapeutic options. Methods: Over 6,700 non-small cell lung cancer cases referred to Caris Life Sciences between 2009 and 2014. Diagnoses and history were collected from referring physicians. Specific testing was performed per physician request and included a combination of sequencing (Sanger, NGS or pyrosequencing), protein expression (IHC), gene amplification/rearrangement (CISH or FISH), and/or RNA fragment analysis. Results: Tumors profiles from patients with hormone receptor positive disease (HER2, ER, PR, or AR positive by IHC) (n=629), HER2 mutations (n=8) ALK rearrangements (n=55), ROS1 rearrangement (n=17), cMET amplification or mutation (n=126), and cKIT mutation (n=11) were included in this analysis and compared to the whole cohort. Tumors with ALK rearrangement overexpressed AR in 18% of cases, and 7% presented with concomitant KRAS mutation. Lower rates of PTEN loss, as assessed by IHC, were observed in ALK positive (20%), ROS1 positive (9%) and cKIT mutated tumors (25%) compared to the overall NSCLC population (58%). cMET was overexpressed in 66% of ROS1 translocated and 57% of HER2 mutated tumors. cKIT mutations were found co-existing with APC (20%) and EGFR (20%) mutations. Pathway analysis revealed that hormone receptor positive disease carried more mutations in the ERK pathway (32%) compared to 9% in the mTOR pathway. 25% of patients with HER2 mutations harbored a co-existing mutation in the mTOR pathway. Conclusions: Pathway profiling reveals that NSCLC tumors present more often than reported with several concomitant alterations affecting the ERK or AKT pathway. Additionally, they are also characterized by the expression of potential biological modifiers of the cell cycle like hormonal receptors, representing a rationale for dual inhibition strategies in selected patients. Further refining of the understanding of NSCLC biomarker profile will optimize research for new treatment strategies.
Resumo:
Background: A substantial proportion of NSCLC has been shown to harbour specific molecular alterations affecting tumour proliferation and resulting in sensitivity to inhibition of the corresponding activated oncogenic pathway by targeted therapies. Comprehensive tumor profiling can diagnose such alterations and may identify new alterations opening additional treatment options for all distinct NSCLC subtypes. Methods: Over 6,700 non-small cell lung cancer cases referred to Caris Life Sciences between 2009 and 2014 were evaluated; clinical diagnoses and detailed tumor pathology were collected from referring physicians. Specific profiling was performed per physician request and included a combination of sequencing (Sanger, NGS or pyrosequencing), protein expression (IHC), gene amplification/rearrangement (CISH or FISH), and/or RNA fragment analysis within potential cancer-related genes and pathways. Results: Patients were grouped into cohorts according to histological subtype - adenocarcinoma (AD) (n=4,286), squamous cell carcinoma (SCC) (n=1,280), large cell carcinoma (LCC) (n=153) and bronchioalveolar carcinoma (BAC) (n=94). Protein overexpression of cMET (>2+ in >50% cells) was higher in AD (35.9%) compared to other subgroups (12-20%) while RRM1 and TOP2A levels were lower in AD. ALK or ROS1 were rearranged in 5.3% of patients with AD compared to 3.7% of patients with LCC and 1.2% of patients with SCC. EGFR mutations were found at low prevalence in both the LCC (0%) and SCC cohorts (2.8%) compared to 21% in AD. Similar lower rates of BRAF mutations were observed in the LCC and SCC cohorts compared to AD (0%, 1.1% and 5.1%). Pathway analysis showed activating mutations in the ERK pathway in 40% of patients with AD. Only 10-12% of patients with LCC or SCC had activating mutations in the ERK pathway. Conclusions: Despite the limitations of this retrospective series, we report comprehensive profiling of the largest cohort of NSCLC. Tumor profiling reveals that ADs may be more addicted to the ERK pathway than other histological subtypes. Drugs which target cMET may also have most utility in AD. Full analysis by histological subtype and additional correlative data on protein expression, gene copy number and mutations will be presented.
Resumo:
Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.