79 resultados para High-intensity cycling
Resumo:
PURPOSE: This study aims to identify which aspects of the pupil light reflex are most influenced by rods and cones independently by analyzing pupil recordings from different mouse models of photoreceptor deficiency. METHODS: One-month-old wild type (WT), rodless (Rho-/-), coneless (Cnga3-/-), or photoreceptor less (Cnga3-/-; Rho-/- or Gnat1-/-) mice were subjected to brief red and blue light stimuli of increasing intensity. To describe the initial dynamic response to light, the maximal pupillary constriction amplitudes and the derivative curve of the first 3 seconds were determined. To estimate the postillumination phase, the constriction amplitude at 9.5 seconds after light termination was related to the maximal constriction amplitude. RESULTS: Rho-/- mice showed decreased constriction amplitude but more prolonged pupilloconstriction to all blue and red light stimuli compared to wild type mice. Cnga3-/- mice had constriction amplitudes similar to WT however following maximal constriction, the early and rapid dilation to low intensity blue light was decreased. To high intensity blue light, the Cnga3-/- mice demonstrated marked prolongation of the pupillary constriction. Cnga3-/-; Rho-/- mice had no pupil response to red light of low and medium intensity. CONCLUSIONS: From specific gene defective mouse models which selectively voided the rod or cone function, we determined that mouse rod photoreceptors are highly contributing to the pupil response to blue light stimuli but also to low and medium red stimuli. We also observed that cone cells mainly drive the partial rapid dilation of the initial response to low blue light stimuli. Thus photoreceptor dysfunction can be derived from chromatic pupillometry in mouse models.
Resumo:
OBJECTIVE: To assess the effectiveness of IPTp in two areas with different malaria transmission intensities. METHODS: Prospective observational study recruiting pregnant women in two health facilities in areas with high and low malaria transmission intensities. A structured questionnaire was used for interview. Maternal clinic cards and medical logs were assessed to determine drug intake. Placental parasitaemia was screened using both light microscopy and real-time quantitative PCR. RESULTS: Of 350 pregnant women were recruited and screened for placental parasitaemia, 175 from each area. Prevalence of placental parasitaemia was 16.6% (CI 11.4-22.9) in the high transmission area and 2.3% (CI 0.6-5.7) in the low transmission area. Being primigravida and residing in a high transmission area were significant risk factors for placental malaria (OR 2.4; CI 1.1-5.0; P = 0.025) and (OR 9.4; CI 3.2-27.7; P < 0.001), respectively. IPTp was associated with a lower risk of placental malaria (OR 0.3; CI 0.1-1.0; P = 0.044); the effect was more pronounced in the high transmission area (OR 0.2; CI 0.06-0.7; P = 0.015) than in the low transmission area (OR 0.4; CI 0.04-4.5; P = 0.478). IPTp use was not associated with reduced risk of maternal anaemia or low birthweight, regardless of transmission intensity. The number needed to treat (NNT) was four (CI 2-6) women in the high transmission area and 33 (20-50) in the low transmission area to prevent one case of placental malaria. CONCLUSION: IPTp may have an effect on lowering the risk of placental malaria in areas of high transmission, but this effect did not translate into a benefit on risks of maternal anaemia or low birthweight. The NNT needs to be considered, and weighted against that of other protective measures, eventually targeting areas which are above a certain threshold of malaria transmission to maximise the benefit.
Resumo:
Background: Hemolytic-uremic syndrome (HUS) is a multisystem disorder associated with significant morbidity and mortality. Typically, HUS is preceded by an episode of (bloody) diarrhea mostly due to Shiga-toxin (Stx) producing Escherichia coli (STEC). The main reservoir for STEC is the intestine of healthy ruminants, mostly cattle, and recent studies have revealed an association between indicators of livestock density and human STEC infection or HUS, respectively. Nationwide data on HUS in Switzerland have been established through the Swiss Pediatric Surveillance Unit (SPSU) [Schifferli et al. Eur J Pediatr. 2010; 169:591-8]. Aims: Analysis of age-specific incidence rate of childhood HUS and possible association of Shiga-toxin associated HUS (Stx-HUS) with indicators of livestock farming intensity. Methods: Epidemiological and ecological analysis based on the SPSU data (1997-2003) and the database of the Swiss Federal Statistical Office (data on population and agriculture). Results: One hundred-fourteen cases were registered, 88% were ≤5 years old. The overall annual incidence rate was 1.42 (0.60-1.91) and 4.23 (1.76-6.19) per 100000 children ≤5 and ≤16 years, respectively (P = 0.005). Stx-HUS was more frequent compared to cases not associated with STEC (P = 0.002). The incidence rate for Stx-HUS was 3.85 (1.76-5.65) in children ≤5, compared to 0.27 (0.00-0.54) per 100'000 children 5-16 years (P = 0.002), respectively. The incidence rate of cases not associated with STEC infection did not significantly vary with age (P = 0.107). Compared to data from Scotland, Canada, Ireland, Germany, England, Australia, Italy, and Austria the annual incidence rate of HUS in young children is highest in Switzerland. Ecological analysis revealed strong association between the incidence rate of Stx-HUS and indicators of rural occupation (agricultural labourer / population, P = 0.030), farming intensity (livestock breeding farms / population, P = 0.027) and cattle density (cattle / cultivated area, P = 0.013). Conclusions: Alike in other countries, HUS in Switzerland is mostly associated with STEC infection and affects predominantly young children. However, the incidence rate is higher compared to countries abroad and is significantly correlated with indicators of livestock farming intensity. The present data support the impact of direct and indirect contact with animals or fecal contaminants in transmission of STEC to humans.
Resumo:
INTRODUCTION: To report acute and late toxicities in patients with intermediate- and high-risk prostate cancer treated with combined high-dose-rate brachytherapy (HDR-B) and intensity-modulated radiation therapy (IMRT). MATERIALS AND METHODS: From March 2003 to September 2005, 64 men were treated with a single implant HDR-B with 21 Gy given in three fractions, followed by 50 Gy IMRT along with organ tracking. Median age was 66.1 years, and risk of recurrence was intermediate in 47% of the patients or high in 53% of the patients. Androgen deprivation therapy was received by 69% of the patients. Toxicity was scored according to the CTCAE version 3.0. Median follow-up was 3.1 years. RESULTS: Acute grade 3 genitourinary (GU) toxicity was observed in 7.8% of the patients, and late grades 3 and 4 GU toxicity was observed in 10.9% and 1.6% of the patients. Acute grade 3 gastrointestinal (GI) toxicity was experienced by 1.6% of the patients, and late grade 3 GI toxicity was absent. The urethral V(120) (urethral volume receiving > or =120% of the prescribed HDR-B dose) was associated with acute (P=.047) and late > or = grade 2 GU toxicities (P=.049). CONCLUSIONS: Late grades 3 and 4GU toxicity occurred in 10.9% and 1.6% of the patients after HDR-B followed by IMRT in association with the irradiated urethral volume. The impact of V(120) on GU toxicity should be validated in further studies.
Resumo:
The aim of this study was to determine whether breath 13CO2 measurements could be used to assess the compliance to a diet containing carbohydrates naturally enriched in 13C. The study was divided into two periods: Period 1 (baseline of 4 days) with low 13C/12C ratio carbohydrates. Period 2 (5 days) isocaloric diet with a high 13C/12C ratio (corn, cane sugar, pineapple, millet) carbohydrates. Measurements were made of respiratory gas exchange by indirect calorimetry, urinary nitrogen excretion and breath 13CO2 every morning in post-absorptive conditions, both in resting state and during a 45-min low intensity exercise (walking on a treadmill). The subjects were 10 healthy lean women (BMI 20.4 +/- 1.7 kg/m2, % body fat 24.4 +/- 1.3%), the 13C enrichment of oxidized carbohydrate and breath 13CO2 were compared to the enrichment of exogenous dietary carbohydrates. At rest the enrichment of oxidized carbohydrate increased significantly after one day of 13C carbohydrate enriched diet and reached a steady value (103 +/- 16%) similar to the enrichment of exogenous carbohydrates. During exercise, the 13C enrichment of oxidized carbohydrate remained significantly lower (68 +/- 17%) than that of dietary carbohydrates. The compliance to a diet with a high content of carbohydrates naturally enriched in 13C may be assessed from the measurement of breath 13CO2 enrichment combined with respiratory gas exchange in resting, postabsorptive conditions.
Resumo:
MAGE-encoded antigens, which are expressed by tumors of many histological types but not in normal tissues, are suitable candidates for vaccine-based immunotherapy of cancers. Thus far, however, T-cell responses to MAGE antigens have been detected only occasionally in cancer patients. In contrast, by using HLA/peptide fluorescent tetramers, we have observed recently that CD8(+) T cells specific for peptide MAGE-A10(254-262) can be detected frequently in peptide-stimulated peripheral blood mononuclear cells from HLA-A2-expressing melanoma patients and healthy donors. On the basis of these results, antitumoral vaccination trials using peptide MAGE-A10(254-262) have been implemented recently. In the present study, we have characterized MAGE-A10(254-262)-specific CD8(+) T cells in polyclonal cultures and at the clonal level. The results indicate that the repertoire of MAGE-A10(254-262)-specific CD8(+) T cells is diverse both in terms of clonal composition, efficiency of peptide recognition, and tumor-specific lytic activity. Importantly, only CD8(+) T cells able to recognize the antigenic peptide with high efficiency are able to lyse MAGE-A10-expressing tumor cells. Under defined experimental conditions, the tetramer staining intensity exhibited by MAGE-A10(254-262)-specific CD8(+) T cells correlates with efficiency of peptide recognition so that "high" and "low" avidity cells can be separated by FACS. Altogether, the data reported here provide evidence for functional diversity of MAGE-A10(254-262)-specific T cells and will be instrumental for the monitoring of peptide MAGE-A10(254-262)-based clinical trials.
Resumo:
Alcohol-dependent subjects tend to report lower level of response to alcohol (LR) in the years before the disorder developed, compared to control subjects. The Self-Rating of the Effects of alcohol (SRE) score is a quick and valid retrospective estimate of LR. This study examined the associations between alcohol abuse or dependence and early experience of alcohol as measured on retrospective SRE score (relating to the first five times alcohol was imbibed), and the presence of alcohol abuse or dependence, in patients attending primary care. Higher Early SRE score (i.e. greater early tolerance of alcohol) was obtained in patients with an alcohol-related diagnosis than in patients without those diagnoses. Using a cut-off of 2 on the Early SRE score, the Early SRE score could discriminate between patients with and without an alcohol diagnosis with moderate to high sensitivity (84%) and modest specificity (57%).
Resumo:
Background: To assess the early clinical outcomes and toxicities in patients treated with high precision radiation therapy (RT) consisting of helical tomotherapy (HT) or intensity-modulated radiation therapy (IMRT) for anal cancer. Materials and Methods: Since March 2006, 30 patients with stage I-IIIB anal squamous-cell carcinoma were treated curatively by IMRT or HT alone (n = 2) or by concomitant chemotherapy and IMRT or HT (n = 28). Median age was 59 years (range, 36−83 years) and the female/male ratio was 2.3 (21/9). Primary tumor site was anal canal, anal margin, or both in 26, 1, and 3 patients, respectively. Anal tumor, pelvic and inguinal nodes were irradiated with a median dose of 36 Gy using HT, or 5- or 7-field IMRT in 18 and 12 patients, respectively; After a planned gap of 1−2 weeks (median 1 week), a median boost dose of 23.4 Gwas delivered to the tumor and/or involved nodes using 3DRT (n = 24) or HT/IMRT (n = 6). The total delivered dose ranged between 59.4 and 64.8 Gy (median, 59.4 Gy). Concomitant chemotherapy consisted of mitomycin C alone (n = 1), mitomycin C and 5-fluorouracil (n = 17) or capecitabin (n = 10) in 28 patients. Common Terminology Criteria for Adverse Events v3.0 scale was used to score acute and late toxicities. Results: All but one patient, who developed progressive local and distant disease at the end of RT, achieved a complete response. Twelve months following RT, one patient had a recurrence at the primary tumor site, salvaged with brachytherapy. After a median follow-up of 7.5 months (range, 1−35 months), no deaths were observed. The 2-year actuarial locoregional control and probability of disease control without colostomy rates were 82% and 79%, respectively. RT was well tolerated without any unplanned treatment interruptions. Grade 1 or 2 acute adverse events consisted of skin toxicity in 8 and 22 patients, diarrhea in 18 and 3 patients, and cystitis in 9 and 2 patients; respectively. Only one patient developed grade 3 mucosal necrosis at the end of the treatment, requiring diverting colostomy. No difference in terms of acute toxicity was observed between patients treated with HT or IMRT. None of the 22 patients with a follow-up of more than 3 months developed grade 3 or more late toxicity. Conclusions: Our preliminary results suggest that HT or IMRT combined with concomitant chemotherapy for anal cancer is effective, and associated with favorable rates of toxicity compared with historical series. Further follow-up is warranted to assess late toxicity.
Resumo:
Recently, the spin-echo full-intensity acquired localized (SPECIAL) spectroscopy technique was proposed to unite the advantages of short TEs on the order of milliseconds (ms) with full sensitivity and applied to in vivo rat brain. In the present study, SPECIAL was adapted and optimized for use on a clinical platform at 3T and 7T by combining interleaved water suppression (WS) and outer volume saturation (OVS), optimized sequence timing, and improved shimming using FASTMAP. High-quality single voxel spectra of human brain were acquired at TEs below or equal to 6 ms on a clinical 3T and 7T system for six volunteers. Narrow linewidths (6.6 +/- 0.6 Hz at 3T and 12.1 +/- 1.0 Hz at 7T for water) and the high signal-to-noise ratio (SNR) of the artifact-free spectra enabled the quantification of a neurochemical profile consisting of 18 metabolites with Cramér-Rao lower bounds (CRLBs) below 20% at both field strengths. The enhanced sensitivity and increased spectral resolution at 7T compared to 3T allowed a two-fold reduction in scan time, an increased precision of quantification for 12 metabolites, and the additional quantification of lactate with CRLB below 20%. Improved sensitivity at 7T was also demonstrated by a 1.7-fold increase in average SNR (= peak height/root mean square [RMS]-of-noise) per unit-time.
Resumo:
This study aimed to quantitatively describe and compare whole-body fat oxidation kinetics in cycling and running using a sinusoidal mathematical model (SIN). Thirteen moderately trained individuals (7 men and 6 women) performed two graded exercise tests, with 3-min stages and 1 km h(-1) (or 20 W) increment, on a treadmill and on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model, which includes three independent variables (dilatation, symmetry and translation) that account for main quantitative characteristics of kinetics, provided a mathematical description of fat oxidation kinetics and allowed for determination of the intensity (Fat(max)) that elicits maximal fat oxidation (MFO). While the mean fat oxidation kinetics in cycling formed a symmetric parabolic curve, the mean kinetics during running was characterized by a greater dilatation (i.e., widening of the curve, P < 0.001) and a rightward asymmetry (i.e., shift of the peak of the curve to higher intensities, P = 0.01). Fat(max) was significantly higher in running compared with cycling (P < 0.001), whereas MFO was not significantly different between modes of exercise (P = 0.36). This study showed that the whole-body fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with cycling. The greater dilatation may be mainly related to the larger muscle mass involved in running while the rightward asymmetry may be induced by the specific type of muscle contraction.
Resumo:
The large spatial inhomogeneity in transmit B, field (B-1(+)) observable in human MR images at hi h static magnetic fields (B-0) severely impairs image quality. To overcome this effect in brain T-1-weighted images the, MPRAGE sequence was modified to generate two different images at different inversion times MP2RAGE By combining the two images in a novel fashion, it was possible to create T-1-weigthed images where the result image was free of proton density contrast, T-2* contrast, reception bias field, and, to first order transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B-1(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T-1-weighted images, acquired within 12 min, high-resolution 3D T-1 maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T-1 maps were validated in phantom experiments. In humans, the T, values obtained at 7 T were 1.15 +/- 0.06 s for white matter (WM) and 1.92 +/- 0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min the T-1 values obtained (0.81 +/- 0.03 S for WM and 1.35 +/- 0.05 for GM) were once again found to be in very good agreement with values in the literature. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl's gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.
Resumo:
We present the study of the geochemical processes associated with the first successful remediation of a marine shore tailings deposit in a coastal desert environment (Bahia de Ite, in the Atacama Desert of Peru). The remediation approach implemented a wetland on top of the oxidized tailings. The site is characterized by a high hydrauliz gradient produced by agricultural irrigation on upstream gravel terraces that pushed river water (similar to 500 mg/L SO(4)) toward the sea and through the tailings deposit. The geochemical and isotopic (delta(2)H(water) and delta(18)O(water), delta(34)S(sulfate) , delta(18)O(sulfate)) approach applied here revealed that evaporite horizons (anhydrite and halite) in the gravel terraces are the source of increased concentrations of SO(4), Cl, and Na up to similar to 1500 mg/L in the springs at the base of the gravel terraces. Deeper groundwater interacting with underlying marine sequences increased the concentrations of SO(4), Cl, and Na up to 6000 mg/L and increased the alkalinity up to 923 mg/L CaCO(3) eq. in the coastal aquifer. These waters infiltrated into the tailings deposit at the shelf-tailings interface. Nonremediated tailings had a low-pH oxidation zone (pH 1-4) with significant accumulations of efflorescent salts (10-20 cm thick) at the surface because of upward capillary transport of metal cations in the arid climate. Remediated tailings were characterized by neutral pH and reducing conditions (pH similar to 7, Eh similar to 100 mV). As a result, most bivalent metals such as Cu, Zn, and Ni had very low concentrations (around 0.01 mg/L or below detection limit) because of reduction and sorption processes. In contrast, these reducing conditions increased the mobility of iron from two sources in this system: (1) The originally Fe(III)-rich oxidation zone, where Fe(II) was reduced during the remediation process and formed an Fe(II) plume, and (2) reductive dissolution of Fe(III) oxides present in the original shelf lithology formed an Fe-Mn plume at 10-m depth. These two Fe-rich plumes were pushed toward the shoreline where more oxidizing and higher pH conditions triggered the precipitation of Fe(HI)hydroxide coatings on silicates. These coatings acted as a filter for the arsenic, which naturally infiltrated with the river water (similar to 500 mu g/L As natural background) into the tailings deposit.
Resumo:
BACKGROUND: The dose intensity of chemotherapy can be increased to the highest possible level by early administration of multiple and sequential high-dose cycles supported by transfusion with peripheral blood progenitor cells (PBPCs). A randomized trial was performed to test the impact of such dose intensification on the long-term survival of patients with small cell lung cancer (SCLC). METHODS: Patients who had limited or extensive SCLC with no more than two metastatic sites were randomly assigned to high-dose (High, n = 69) or standard-dose (Std, n = 71) chemotherapy with ifosfamide, carboplatin, and etoposide (ICE). High-ICE cycles were supported by transfusion with PBPCs that were collected after two cycles of treatment with epidoxorubicin at 150 mg/m(2), paclitaxel at 175 mg/m(2), and filgrastim. The primary outcome was 3-year survival. Comparisons between response rates and toxic effects within subgroups (limited or extensive disease, liver metastases or no liver metastases, Eastern Cooperative Oncology Group performance status of 0 or 1, normal or abnormal lactate dehydrogenase levels) were also performed. RESULTS: Median relative dose intensity in the High-ICE arm was 293% (range = 174%-392%) of that in the Std-ICE arm. The 3-year survival rates were 18% (95% confidence interval [CI] = 10% to 29%) and 19% (95% CI = 11% to 30%) in the High-ICE and Std-ICE arms, respectively. No differences were observed between the High-ICE and Std-ICE arms in overall response (n = 54 [78%, 95% CI = 67% to 87%] and n = 48 [68%, 95% CI = 55% to 78%], respectively) or complete response (n = 27 [39%, 95% CI = 28% to 52%] and n = 24 [34%, 95% CI = 23% to 46%], respectively). Subgroup analyses showed no benefit for any outcome from High-ICE treatment. Hematologic toxicity was substantial in the Std-ICE arm (grade > or = 3 neutropenia, n = 49 [70%]; anemia, n = 17 [25%]; thrombopenia, n = 17 [25%]), and three patients (4%) died from toxicity. High-ICE treatment was predictably associated with severe myelosuppression, and five patients (8%) died from toxicity. CONCLUSIONS: The long-term outcome of SCLC was not improved by raising the dose intensity of ICE chemotherapy by threefold.
Resumo:
PURPOSE: This study investigated the isolated and combined effects of heat [temperate (22 °C/30 % rH) vs. hot (35 °C/40 % rH)] and hypoxia [sea level (FiO2 0.21) vs. moderate altitude (FiO2 0.15)] on exercise capacity and neuromuscular fatigue characteristics. METHODS: Eleven physically active subjects cycled to exhaustion at constant workload (66 % of the power output associated with their maximal oxygen uptake in temperate conditions) in four different environmental conditions [temperate/sea level (control), hot/sea level (hot), temperate/moderate altitude (hypoxia) and hot/moderate altitude (hot + hypoxia)]. Torque and electromyography (EMG) responses following electrical stimulation of the tibial nerve (plantar-flexion; soleus) were recorded before and 5 min after exercise. RESULTS: Time to exhaustion was reduced (P < 0.05) in hot (-35 ± 15 %) or hypoxia (-36 ± 14 %) compared to control (61 ± 28 min), while hot + hypoxia (-51 ± 20 %) further compromised exercise capacity (P < 0.05). However, the effect of temperature or altitude on end-exercise core temperature (P = 0.089 and P = 0.070, respectively) and rating of perceived exertion (P > 0.05) did not reach significance. Maximal voluntary contraction torque, voluntary activation (twitch interpolation) and peak twitch torque decreased from pre- to post-exercise (-9 ± 1, -4 ± 1 and -6 ± 1 % all trials compounded, respectively; P < 0.05), with no effect of the temperature or altitude. M-wave amplitude and root mean square activity were reduced (P < 0.05) in hot compared to temperate conditions, while normalized maximal EMG activity did not change. Altitude had no effect on any measured parameters. CONCLUSION: Moderate hypoxia in combination with heat stress reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Impaired oxygen delivery or increased cardiovascular strain, increasing relative exercise intensity, may have also contributed to earlier exercise cessation.