65 resultados para Educational Software
Resumo:
The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.
Resumo:
A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R(2) ≈ 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for ≈2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
BACKGROUND: The objective of this study was to describe educational achievements of childhood cancer survivors in Switzerland compared with the general population. In particular, the authors investigated educational problems during childhood, final educational achievement in adulthood, and its predictors. METHODS: Childhood cancer survivors who were aged <16 years at diagnosis from 1976 to 2003 who had survived for ≥5 years and were currently ages 20 to 40 years received a postal questionnaire during 2007 to 2009. Controls were respondents of the Swiss Health Survey ages 20 to 40 years. Educational achievement included compulsory schooling, vocational training, upper secondary schooling, and university degree. The analysis was weighted to optimize comparability of the populations. The authors analyzed the association between demographic and clinical predictors and educational achievement using multivariable logistic regression. Subgroup analyses focused on survivors aged ≥27 years. RESULTS: One-third of survivors encountered educational problems during schooling (30% repeated 1 year, and 35% received supportive tutoring). In the total sample, more survivors than controls achieved compulsory schooling only (8.7% vs 5.2%) and fewer acquired a university degree (7.3% vs 11%), but more survivors than controls achieved an upper secondary education (36.1 vs 24.1%). In those aged ≥27 years, differences in compulsory schooling and university education largely disappeared. In survivors and controls, sex, nationality, language region, and migration background were strong predictors of achievement. Survivors of central nervous system tumors or those who had a relapse had poorer outcomes (P < .05). CONCLUSIONS: Childhood cancer survivors encountered problems during schooling and completed professional education with some delay. However, with the exception of patients who had central nervous system tumors and those who experienced a relapse, the final educational achievement in survivors of child cancer was comparable to that of the general population.
Resumo:
Aim. Several software packages (SWP) and models have been released for quantification of myocardial perfusion (MP). Although they all are validated against something, the question remains how well their values agree. The present analysis focused on cross-comparison of three SWP for MP quantification of 13N-ammonia PET studies. Materials & Methods. 48 rest and stress MP 13N-ammonia PET studies of hypertrophic cardiomyopathy (HCM) patients (Sciagrà et al., 2009) were analysed with three SW packages - Carimas, PMOD, and FlowQuant - by three observers blinded to the results of each other. All SWP implement the one-tissue-compartment model (1TCM, DeGrado et al. 1996), and first two - the two-tissue-compartment model (2TCM, Hutchins et al. 1990) as well. Linear mixed model for the repeated measures was fitted to the data. Where appropriate we used Bland-Altman plots as well. The reproducibility was assessed on global, regional and segmental levels. Intraclass correlation coefficients (ICC), differences between the SWPs and between models were obtained. ICC≥0.75 indicated excellent reproducibility, 0.4≤ICC<0.75 indicated fair to good reproducibility, ICC<0.4 - poor reproducibility (Rosner, 2010). Results. When 1TCM MP values were compared, the SW agreement on global and regional levels was excellent, except for Carimas vs. PMOD at RCA: ICC=0.715 and for PMOD vs. FlowQuant at LCX:ICC=0.745 which were good. In segmental analysis in five segments: 7,12,13, 16, and 17 the agreement between all SWP was excellent; in the remaining 12 segments the agreement varied between the compared SWP. Carimas showed excellent agreement with FlowQuant in 13 segments and good in four - 1, 5, 6, 11: 0.687≤ICCs≤0.73; Carimas had excellent agreement with PMOD in 11 segments, good in five_4, 9, 10, 14, 15: 0.682≤ICCs≤0.737, and poor in segment 3: ICC=0.341. PMOD had excellent agreement with FlowQuant in eight segments and substantial-to-good in nine_1, 2, 3, 5, 6,8-11: 0.585≤ICCs≤0.738. Agreement between Carimas and PMOD for 2TCM was good at a global level: ICC=0.745, excellent at LCX (0.780) and RCA (0.774), good at LAD (0.662); agreement was excellent for ten segments, fair-to-substantial for segments 2, 3, 8, 14, 15 (0.431≤ICCs≤0.681), poor for segments 4 (0.384) and 17 (0.278). Conclusions. The three SWP used by different operators to analyse 13N-ammonia PET MP studies provide results that agree well at a global level, regional levels, and mostly well even at a segmental level. Agreement is better for 1TCM. Poor agreement at segments 4 and 17 for 2TCM needs further clarification.
Resumo:
Training future pathologists is an important mission of many hospital anatomic pathology departments. Apprenticeship-a process in which learning and teaching tightly intertwine with daily work, is one of the main educational methods in use in postgraduate medical training. However, patient care, including pathological diagnosis, often comes first, diagnostic priorities prevailing over educational ones. Recognition of the unique educational opportunities is a prerequisite for enhancing the postgraduate learning experience. The aim of this paper is to draw attention of senior pathologists with a role as supervisor in postgraduate training on the potential educational value of a multihead microscope, a common setting in pathology departments. After reporting on an informal observation of senior and junior pathologists' meetings around the multihead microscope in our department, we review the literature on current theories of learning to provide support to the high potential educational value of these meetings for postgraduate training in pathology. We also draw from the literature on learner-centered teaching some recommendations to better support learning in this particular context. Finally, we propose clues for further studies and effective instruction during meetings around a multihead microscope.
Resumo:
In the outpatient setting, the long-term management of cardiovascular risk factors is essential to prevent recurrent cardiovascular disease. Recent studies have shown an additional benefit of beginning cardiovascular secondary prevention during the hospital stay. Early, in-hospital initiation of proven beneficial medications, such as aspirin or blood lipid lowering drugs and therapeutic lifestyle change counseling, improves patients' long-term outcome, as long as there is continuity of care in the outpatient setting. A recent hospitalization may be a teachable moment, when patients are more likely to modify their health behaviors. The continuity of care between in-hospital medicine and the outpatient setting helps patients in the long-term management of their cardiovascular disease.
Resumo:
BACKGROUND: Current bilevel positive-pressure ventilators for home noninvasive ventilation (NIV) provide physicians with software that records items important for patient monitoring, such as compliance, tidal volume (Vt), and leaks. However, to our knowledge, the validity of this information has not yet been independently assessed. METHODS: Testing was done for seven home ventilators on a bench model adapted to simulate NIV and generate unintentional leaks (ie, other than of the mask exhalation valve). Five levels of leaks were simulated using a computer-driven solenoid valve (0-60 L/min) at different levels of inspiratory pressure (15 and 25 cm H(2)O) and at a fixed expiratory pressure (5 cm H(2)O), for a total of 10 conditions. Bench data were compared with results retrieved from ventilator software for leaks and Vt. RESULTS: For assessing leaks, three of the devices tested were highly reliable, with a small bias (0.3-0.9 L/min), narrow limits of agreement (LA), and high correlations (R(2), 0.993-0.997) when comparing ventilator software and bench results; conversely, for four ventilators, bias ranged from -6.0 L/min to -25.9 L/min, exceeding -10 L/min for two devices, with wide LA and lower correlations (R(2), 0.70-0.98). Bias for leaks increased markedly with the importance of leaks in three devices. Vt was underestimated by all devices, and bias (range, 66-236 mL) increased with higher insufflation pressures. Only two devices had a bias < 100 mL, with all testing conditions considered. CONCLUSIONS: Physicians monitoring patients who use home ventilation must be aware of differences in the estimation of leaks and Vt by ventilator software. Also, leaks are reported in different ways according to the device used.
Resumo:
We propose a new approach and related indicators for globally distributed software support and development based on a 3-year process improvement project in a globally distributed engineering company. The company develops, delivers and supports a complex software system with tailored hardware components and unique end-customer installations. By applying the domain knowledge from operations management on lead time reduction and its multiple benefits to process performance, the workflows of globally distributed software development and multitier support processes were measured and monitored throughout the company. The results show that the global end-to-end process visibility and centrally managed reporting at all levels of the organization catalyzed a change process toward significantly better performance. Due to the new performance indicators based on lead times and their variation with fixed control procedures, the case company was able to report faster bug-fixing cycle times, improved response times and generally better customer satisfaction in its global operations. In all, lead times to implement new features and to respond to customer issues and requests were reduced by 50%.
Resumo:
L'objectif principal de ce projet d'extension des prestations, de type Antenne d'intervention dans le milieu pour enfants et adolescents (AIMEA) aux foyers socio-éducatifs pour l'ensemble du canton de Vaud, vise à décloisonner les champs socio-éducatifs et pédopsychiatriques. 64 patients ont fait l'objet d'une évaluation au cours de la phase pilote (après une année de fonctionnement). De plus, une enquête de satisfaction a été effectuée soit à la fin du suivi, soit à la fin de la phase pilote de ce projet (au 31.12.2012). Cette expérience très positive, relevée par une grande majorité des acteurs impliqués dans la prise en charge socio-éducative et pédopsychiatrique des mineurs, suscite un désir d'extension des prestations de type équipe mobile à d'autres structures ou à d'autres types de situations. The main objective of this project about mobile team service extension to the socio-educational home of the whole Vaud canton targets to decompartmentalize the socio-educational and youth-psychiatry domains. 64 patient were assessed during this pilot phase (after one-year functioning). In addition, a satisfaction survey was done either at the end of the follow up or at the end of the pilot phase of the project (31.12.2012). This experience was very positive as highlighted by the vast majority of the person involved in the socio-educational and youth-psychiatric domains taking care of youth. A desire of extension of mobile team service to other institutional structure or other situations was expressed.
Resumo:
OBJECTIVE: This pilot experimental study tested the feasibility and intended effect of an educational intervention for parents to help them assist their adolescent child with chronic illness (CI) in becoming autonomous. METHODS: A two-phase pre-post pilot intervention study targeting parents of adolescents with CI was conducted. Parents were allocated to group 1 and 2 and received the four-module intervention consecutively. Intended effect was measured through online questionnaires for parents and adolescents before, at 2 months after, and at 4-6 months after the intervention. Feasibility was assessed through an evaluation questionnaire for parents. RESULTS: The most useful considered modules concerned the future of the adolescent and parents and social life. The most valued aspect was to exchange with other parents going through similar problems and receiving a new outlook on their relationship with their child. For parents, improvement trends appeared for shared management, parent protection, and self-efficacy, and worsening trends appeared for coping skills, parental perception of child vulnerability, and parental stress. For adolescents, improvement trends appeared for self-efficacy and parental bonding and worsening trends appeared for shared management and coping skills. CONCLUSION: Parents could benefit from peer-to-peer support and education as they support the needed autonomy development of their child. Future studies should test an online platform for parents to find peer support at all times and places.
Resumo:
Educational institutions are considered a keystone for the establishment of a meritocratic society. They supposedly serve two functions: an educational function that promotes learning for all, and a selection function that sorts individuals into different programs, and ultimately social positions, based on individual merit. We study how the function of selection relates to support for assessment practices known to harm vs. benefit lower status students, through the perceived justice principles underlying these practices. We study two assessment practices: normative assessment-focused on ranking and social comparison, known to hinder the success of lower status students-and formative assessment-focused on learning and improvement, known to benefit lower status students. Normative assessment is usually perceived as relying on an equity principle, with rewards being allocated based on merit and should thus appear as positively associated with the function of selection. Formative assessment is usually perceived as relying on corrective justice that aims to ensure equality of outcomes by considering students' needs, which makes it less suitable for the function of selection. A questionnaire measuring these constructs was administered to university students. Results showed that believing that education is intended to select the best students positively predicts support for normative assessment, through increased perception of its reliance on equity, and negatively predicts support for formative assessment, through reduced perception of its ability to establish corrective justice. This study suggests that the belief in the function of selection as inherent to educational institutions can contribute to the reproduction of social inequalities by preventing change from assessment practices known to disadvantage lowerstatus student, namely normative assessment, to more favorable practices, namely formative assessment, and by promoting matching beliefs in justice principles.