189 resultados para E3 ubiquitin ligase
Resumo:
Jasmonates in plants are cyclic fatty acid-derived regulators structurally similar to prostaglandins in metazoans. These chemicals mediate many of plants' transcriptional responses to wounding and pathogenesis by acting as potent regulators for the expression of numerous frontline immune response genes, including those for defensins and antifungal proteins. Additionally, the pathway is critical for fertility. Ongoing genetic screens and protein-protein interaction assays are identifying components of the canonical jasmonate signaling pathway. A massive molecular machine, based on two multiprotein complexes, SCF(COI1) and the COP9 signalosome (CNS), plays a central role in jasmonate signaling. This machine functions in vivo as a ubiquitin ligase complex, probably targeting regulatory proteins, some of which are expected to be transcriptional repressors. Some defense-related mediators, notably salicylic acid, antagonize jasmonates in controlling the expression of many genes. In Arabidopsis, NONEXPRESSOR OF PR GENES (NPR1) mediates part of this interaction, with another layer of control provided further downstream by the mitogen-activated protein kinase (MAPK) homolog MPK4. Numerous other interpathway connections influence the jasmonate pathway. Insights from Arabidopsis have shown that an allele of the auxin signaling gene AXR1, for example, reduces the sensitivity of plants to jasmonate. APETALA2 (AP2)-domain transcription factors, such as ETHYLENE RESPONSE FACTOR 1 (ERF1), link the jasmonate pathway to the ethylene signaling pathway. As progress in characterizing several new mutants (some of which are hypersensitive to jasmonic acid) augments our understanding of jasmonate signaling, the Connections Map will be updated to include this new information.
Resumo:
Angioimmunoblastic T-cell Lymphoma (AITL) is one of the most frequent T-cell lymphoma entities. Follicular helper T lymphocytes (TFH) are recognized as the normal cellular counterpart of the neoplastic component. Despite a clonal T-cell feature and few described recurrent cytogenetic abnormalities, a driving oncogenic event has not been identified so far. It has been recently reported that in mice, heterozygous inactivation of Roquin/Rc3h1, a RING type E3 ubiquitine ligase, recapitulates many of the clinical, histological, and cellular features associated with human AITL. In this study we explored whether ROQUIN alterations could be an initial event in the human AITL oncogenic process. Using microarray and RT-PCR analyses, we investigated the levels of ROQUIN transcripts in TFH tumor cells purified from AITL (n = 8) and reactive tonsils (n = 12) and found similar levels of ROQUIN expression in both. Moreover, we also demonstrated that ROQUIN protein was expressed by AITL TFH (PD1+) cells. We then analysed ROQUIN coding sequence in 12 tumor cell-rich AITL samples and found no mutation in any of the samples. Finally, we analysed the expression of MiR101, a putative partner of ROQUIN involved in the modulation of ICOS expression and found similar levels of expression in tumor and reactive TFH. Altogether, this study shows that neither alteration of ROQUIN gene nor deregulation of miR101 expression is likely to be a frequent recurrent event in AITL.
Resumo:
OBJECTIVES: Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN: Laboratory investigation. SETTING: University medical center research laboratory. SUBJECTS: Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS: Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS: Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS: Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.
Resumo:
Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process.
Resumo:
The mineralocorticoid receptor (MR) plays a crucial role in the regulation of Na(+) balance and blood pressure, as evidenced by gain of function mutations in the MR of hypertensive families. In the kidney, aldosterone binds to the MR, induces its nuclear translocation, and promotes a transcriptional program leading to increased transepithelial Na(+) transport via the epithelial Na(+) channel. In the unliganded state, MR is localized in the cytosol and part of a multiprotein complex, including heat shock protein 90 (Hsp90), which keeps it ligand-binding competent. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a benzoquinone ansamycin antibiotic that binds to Hsp90 and alters its function. We investigated whether 17-AAG affects the stability and transcriptional activity of MR and consequently Na(+) reabsorption by renal cells. 17-AAG treatment lead to reduction of MR protein level in epithelial cells in vitro and in vivo, thereby interfering with aldosterone-dependent transcription. Moreover, 17-AAG inhibited aldosterone-induced Na(+) transport, possibly by interfering with MR availability for the ligand. Finally, we identified the ubiquitin-protein ligase, COOH terminus of Hsp70-interacting protein, as a novel partner of the cytosolic MR, which is responsible for its polyubiquitylation and proteasomal degradation in presence of 17-AAG. In conclusion, 17-AAG may represent a novel pharmacological tool to interfere with Na(+) reabsorption and hypertension.
Resumo:
Glioblastoma (GBM) is the most common and most aggressive malignant primary brain tumour. Despite the aggressiveness of the applied therapy, the prognosis remains poor with a median survival to of about 15 months. It is important to identify new candidate genes that could have clinical application in this disease. Previous gene expression studies from human GBM samples in our laboratory, revealed Ubiquitin Specific Peptidase 15 (USP15) as a gene with low expression, significantly associated with genomic deletions of the chromosomal region encompassing the USP15 locus. USP15 belongs to the ubiquitin-specific protease (USPs) family of which the main role is the reversion of ubiquitination and thereby stabilization of substrates. Previously, USP15 has been suggested to have a tumour suppressor function via its substrates APC and Caspase 3. We established GBM cell lines that stably express USP15 wt or its catalytic mutant. USP15 expression impairs cell growth by inhibiting cell cycle progression. On the other hand USP15 depletion in GBM cell lines induces cell cycle progression and proliferation. In order to identify the molecular pathways in which USP15 is implicated we aimed to identify protein-binding partners in the GBM cell line LN-229 by Mass spectrometry. As a result we identified eight new proteins that interact with USP15. These proteins are involved in important cellular processes like cytokinesis, cell cycle, cellular migration, and apoptosis. Three of these protein interactions were confirmed by co-immunoprecipitation in four GBM cell lines LN-229, LN428, LN18, LN-Z308. One of the binding proteins is HECTD1 E3 ligase of which the murine homologue promotes the APC-Axin interaction to negatively regulate the Wnt pathway. USP15 can de-ubiquitinate HECTD1 in the LN229 cell line while its depletion led to decrease of HECTD1 in GBM cell lines suggesting stabilizing role for USP15. Moreover, HECTD1 stable expression in LN229 inhibits cell cycle, while its depletion induces cell cycle progression. These results suggest that the USP15-HECTD1 interaction might enhance the antiproliferative effect of HECTD1 in GBM cell lines. Using the TOPflash/FOPflash luciferase system we showed that HECTD1 and USP15 overexpression can attenuate WNT pathway activity, and decrease the Axin2 expression. These data indicate that this new protein interaction of USP15 with HECTD1 results in negative regulation of the WNT pathway in GBM cell lines. Further investigation of the regulation of this interaction or of the protein binding network of HECTD1 in GBM may allow the discovery of new therapeutic targets. Finally PTPIP51 and KIF15 are the other two identified protein partners of USP15. These two proteins are involved in cell proliferation and their depletion in LN-229 cell line led to induction of cell cycle progression. USP15 displays a stabilizing role for them. Hence, these results show that the tumour suppressive role of USP15 in GBM cell line via different molecular mechanisms indicating the multidimensional function of USP15. Résumé Le glioblastome (GBM) est la tumeur primaire la plus fréquente et la plus agressive du cervau caractérisée par une survie médiane d'environ à 15 mois. De précédant travaux effectués au sein de notre laboratoire portant sur l'étude de l'expression de gènes pour des échantillons humains de GBM ont montré que le gène Ubiquitin Specific Peptidase 15 (USP1S) était significativement associée à une délétion locales à 25% des cas. Initialement, les substrats protéiques APC et CaspaseS de USP15 ont conduit à considérer cette protéine comme un suppresseur de tumeur. USP15 appartient à la famille protèsse spécifique de l'ubiquitine (USPs) dont le rôle principal est la réversion de l'ubiquitination et la stabilisation de substrats. Par conséquent, nous avons établi des lignées de cellules de glioblastome qui expriment de manière stable USP15 ou bien son mutant catalytique. Ainsi, nous avons ainsi démontré que l'expression de l'USP15 empêche la croissance cellulaire en inhibant la progression du cycle cellulaire. Inversement, la suppression de l'expression du gène USP15 dans les lignées cellulaires de glioblastome induit la progression du cycle cellulaire et la prolifération. Afin d'identifier les voies moléculaires dans lesquelles sont impliquées USP15, nous avons cherché à identifier les partenaires de liaisons protéiques par spectrométrie de masse dans la lignée cellulaire LN-229. Ainsi, huit nouvelles protéines interagissant avec USP15 ont été identifiées dont la ligase E3 HECTD1. L'homologue murin de Hectdl favorise l'interaction APC-Axin en régulant négativement la voie de signalisation de Wnt. USP15 interagit en désubiquitinant HECTD1 dans la lignée cellulaire LN-229 et provoque ainsi l'atténuation de l'activité de cette voie de signalisation. En conclusion, HECTD1, en interagissant avec USP15, joue un rôle de suppresseur de tumeur dans les lignées cellulaire de GBM.
Resumo:
All developmental transitions throughout the life cycle of a plant are influenced by light. In Arabidopsis, multiple photoreceptors including the UV-A/blue-sensing cryptochromes (cry1-2) and the red/far-red responsive phytochromes (phyA-E) monitor the ambient light conditions. Light-regulated protein stability is a major control point of photomorphogenesis. The ubiquitin E3 ligase COP1 (constitutively photomorphogenic 1) regulates the stability of several light-signaling components. HFR1 (long hypocotyl in far-red light) is a putative transcription factor with a bHLH domain acting downstream of both phyA and the cryptochromes. HFR1 is closely related to PIF1, PIF3, and PIF4 (phytochrome interacting factor 1, 3 and 4), but in contrast to the latter three, there is no evidence for a direct interaction between HFR1 and the phytochromes. Here, we show that the protein abundance of HFR1 is tightly controlled by light. HFR1 is an unstable phosphoprotein, particularly in the dark. The proteasome and COP1 are required in vivo to degrade phosphorylated HFR1. In addition, HFR1 can interact with COP1, consistent with the idea of COP1 directly mediating HFR1 degradation. We identify a domain, conserved among several bHLH class proteins involved in light signaling , as a determinant of HFR1 stability. Our physiological experiments indicate that the control of HFR1 protein abundance is important for a normal de-etiolation response.
Resumo:
Abstract: The genesis of the cardiac action potential, which accounts for the cardiac contraction, is due to the sodium current INa mediated by the voltage-gated sodium channel Nav1.5. Several cardiac arrhythmias such as the Brugada syndrome are known te be caused by mutations in SCN5A, the gene encoding Nav1.5. Studies of these mutations allowed a better understanding of biophysical and functional properties of Nav1.5. However, only few investigations have been performed in order to understand the regulation of Nav1.5. During my thesis, I investigated different mechanisms of regulation of Nav1.5 using a heterologous expression system, HEK293 cells, coupled with a technique of sodium current recording: the patch clamp in whole cell configuration. In previous studies it has been shown that an enzyme of the Nedd4 family (Nedd4-2) regulates an epithelial sodium channel via the interaction with PY-motifs present in the latter. Interestingly, Nav1.5 contains a similar PY-motif, which motivated us to study the role of Nedd4-2 expressed in heart for the regulation of Nav1.5. In a second study, we investigated the implication of two Nav1.5 mutants, which were either less functional or net functional (Nav1.5 R535X and Nav1.5 L325R respectively) implied in the genesis of the Brugada syndrome by fever. Our results established two mechanisms implied in Nav1.5 regulation. The first one implies that following the interaction between the PY-motif of Nav1.5 and Nedd4- 2 Nav1.5 is ubiquitinated by Nedd4-2. This ubiquitination leads to the internalization of Nav1 .5. The second mechanism is a phenomenon called the "dominant negative" effect of Nav1.5 L325R on Nay1.5 where the decrease of 'Na is potentially due to the retention of Nav1.5 by Nav1.5 L325R in an undefined intracellular compartment. These studies defined two mechanisms of Nav1.5 regulation, which could play an important role for the genesis of cardiac arrhythmias where molecular processes are still poorly understood. Résumé La genèse du potentiel d'action cardiaque, permettant la contraction cardiaque, est due au courant sodique INa issu des canaux sodiques cardiaques dépendants du voltage Nav1.5. Nombreuses arythmies cardiaques telles que le syndrome de Brugada sont connues pour être liées à des mutations du gène SCN5A, codant pour Nav1.5. L'étude de ces mutations a permis une meilleure compréhension des propriétés structurelles et fonctionnelles de Nav1.5 et leurs implications dans la genèse de ces pathologies. Néanmoins peu d'études ont été menées afin de comprendre les mécanismes de régulation de Nav1.5. Mon travail de thèse a consisté à étudier des mécanismes de régulation de Nav1.5 en utilisant un système d'expression hétérologue, les cellules HEK293, couplé à une technique d'enregistrement des courants sodiques, le "patch clamp" en configuration cellule entière. La présence sur Nav1.5 d'un motif-PY similaire à ceux nécessaires pour la régulation d'un canal épithélial sodique par une enzyme de la famille de Nedd4, nous a amenée à étudier le rôle de ces ubiquitine-ligases, en particulier Nedd4-2, dans la régulation de Nav1.5. La seconde étude s'est intéressée aux conséquences de deux mutations de SCN5A codant pour deux mutants peu ou pas fonctionnels (Nav1.5 L325R et Nav1.5 R535X respectivement) retrouvées chez des patients présentant un syndrome de Brugada exacerbé par un état fébrile. Nos résultats ont permis d'établir deux mécanismes de régulation de Nav1.5 L'un par Nedd4-2 qui implique rubiquitination de Nav1.5 par cette ligase suite à l'interaction entre le motif-PY de Nav1.5 et Nedd4-2. Cette modification déclenche l'internalisation du canal impliquée dans la diminution d'INa. Le second mécanisme quant à lui est un effet "dominant négatif" de Nav1.5 L325R sur Nav1.5 aboutissant à une diminution d'INa suite à la séquestration intracellulaire potentielle de Nav1.5 par Nav1.5 L325R. Ces études ont mis en évidence deux mécanismes de régulation de Nav1.5 pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des arythmies cardiaques dont les processus moléculaires au sein des cardiomyocytes, impliquant des modifications du courant sodiques, sont encore mal compris. Résumé destiné à un large public La dépolarisation électrique de la membrane des cellules cardiaques permet la contraction du coeur. La génèse de cette activité électrique est due au courant sodique issu d'un type de canal à sodium situé dans la membrane des cellules cardiaques. De nombreuses pathologies provoquant des troubles du rythme cardiaque sont issues de mutations du gène qui code pour ce canal à sodium. Ces canaux mutants, entrainant diverses pathologies cardiaques telles que le syndrome de Brugada, ont été largement étudiées. Néanmoins, peu de travaux ont été réalisés sur les mécanismes de régulation de ce canal à sodium non muté. Mon travail de thèse a consisté à étudier certains des mécanismes de régulation de ce canal à sodium en utilisant une technique permettant l'enregistrement des courants sodiques issus de l'expression de ces canaux à sodium à la membrane de cellules mammifères. La présence sur ce canal à sodium d'une structure spécifique, similaire à celle nécessaire pour la régulation d'un canal épithélial à sodium par une enzyme appelée Nedd4-2, nous a amenée à étudier le rôle de cette enzyme dans la régulation de ce canal à sodium. La seconde étude s'est intéressée aux rôles de deux mutations du gène codant pour ce canal à sodium retrouvées chez des patients présentant un syndrome de Brugada exacerbé par la fièvre. Nos résultats nous ont permis d'établir deux mécanismes de régulation de ce canal à sodium diminuant le courant sodique l'un par l'action de l'enzyme Nedd4-2, suite à son interaction avec ce canal, qui modifie ce canal à sodium (ubiquitination) diminuant de ce fait la densité membranaire du canal. L'autre par un mécanisme suggérant un effet négatif de l'un des canaux mutants sur l'expression à la membrane du canal à sodium non muté. Ces études ont mis en évidence deux mécanismes de régulation de ce canal à sodium pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des troubles du rythme cardiaques dont les mécanismes cellulaires sont encore incompris.
Resumo:
All higher plants possess multiple phytochrome photoreceptors, with phytochrome A (phyA) being light labile and other members of the family being relatively light stable (phyB-phyE in Arabidopsis [Arabidopsis thaliana]). phyA also differs from other members of the family because it enables plants to deetiolate in far-red light-rich environments typical of dense vegetational cover. Later in development, phyA counteracts the shade avoidance syndrome. Light-induced degradation of phyA favors the establishment of a robust shade avoidance syndrome and was proposed to be important for phyA-mediated deetiolation in far-red light. phyA is ubiquitylated and targeted for proteasome-mediated degradation in response to light. Cullin1 and the ubiquitin E3 ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) have been implicated in this process. Here, we systematically analyze the requirement of cullins in this process and show that only CULLIN1 plays an important role in light-induced phyA degradation. In addition, the role of COP1 in this process is conditional and depends on the presence of metabolizable sugar in the growth medium. COP1 acts with SUPPRESSOR OF PHYTOCHROME A (SPA) proteins. Unexpectedly, the light-induced decline of phyA levels is reduced in spa mutants irrespective of the growth medium, suggesting a COP1-independent role for SPA proteins.
Resumo:
TGF-β and myostatin are the two most important regulators of muscle growth. Both growth factors have been shown to signal through a Smad3-dependent pathway. However to date, the role of Smad3 in muscle growth and differentiation is not investigated. Here, we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy. Consistent with this, we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice. Loss of Smad3 also led to defective satellite cell (SC) functionality. Smad3-null SCs showed reduced propensity for self-renewal, which may lead to a progressive loss of SC number. Indeed, decreased SC number was observed in skeletal muscle from Smad3-null mice showing signs of severe muscle wasting. Further in vitro analysis of primary myoblast cultures identified that Smad3-null myoblasts exhibit impaired proliferation, differentiation and fusion, resulting in the formation of atrophied myotubes. A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts. Given that myostatin is a negative regulator, we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice. Consistent with this theory, inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.
Resumo:
Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.
Resumo:
The COP9 signalosome (CSN) is an evolutionarily conserved macromolecular complex that interacts with cullin-RING E3 ligases (CRLs) and regulates their activity by hydrolyzing cullin-Nedd8 conjugates. The CSN sequesters inactive CRL4(Ddb2), which rapidly dissociates from the CSN upon DNA damage. Here we systematically define the protein interaction network of the mammalian CSN through mass spectrometric interrogation of the CSN subunits Csn1, Csn3, Csn4, Csn5, Csn6 and Csn7a. Notably, we identified a subset of CRL complexes that stably interact with the CSN and thus might similarly be activated by dissociation from the CSN in response to specific cues. In addition, we detected several new proteins in the CRL-CSN interactome, including Dda1, which we characterized as a chromatin-associated core subunit of multiple CRL4 proteins. Cells depleted of Dda1 spontaneously accumulated double-stranded DNA breaks in a similar way to Cul4A-, Cul4B- or Wdr23-depleted cells, indicating that Dda1 interacts physically and functionally with CRL4 complexes. This analysis identifies new components of the CRL family of E3 ligases and elaborates new connections between the CRL and CSN complexes.
Resumo:
Transepithelial sodium transport via alveolar epithelial Na(+) channels (ENaC) and Na(+),K(+)-ATPase constitutes the driving force for removal of alveolar edema fluid. Alveolar hypoxia associated with pulmonary edema may impair ENaC activity and alveolar Na(+) absorption through a decrease of ENaC subunit expression at the apical membrane of alveolar epithelial cells (AECs). Here, we investigated the mechanism(s) involved in this process in vivo in the β-Liddle mouse strain mice carrying a truncation of β-ENaC C-terminus abolishing the interaction between β-ENaC and the ubiquitin protein-ligase Nedd4-2 that targets the channel for endocytosis and degradation and in vitro in rat AECs. Hypoxia (8% O2 for 24 h) reduced amiloride-sensitive alveolar fluid clearance by 69% in wild-type mice but had no effect in homozygous mutated β-Liddle littermates. In vitro, acute exposure of AECs to hypoxia (0.5-3% O2 for 1-6 h) rapidly decreased transepithelial Na(+) transport as assessed by equivalent short-circuit current Ieq and the amiloride-sensitive component of Na(+) current across the apical membrane, reflecting ENaC activity. Hypoxia induced a decrease of ENaC subunit expression in the apical membrane of AECs with no change in intracellular expression and induced a 2-fold increase in α-ENaC polyubiquitination. Hypoxic inhibition of amiloride-sensitive Ieq was fully prevented by preincubation with the proteasome inhibitors MG132 and lactacystin or with the antioxidant N-acetyl-cysteine. Our data strongly suggest that Nedd4-2-mediated ubiquitination of ENaC leading to endocytosis and degradation of apical Na(+) channels is a key feature of hypoxia-induced inhibition of transepithelial alveolar Na(+) transport.
Resumo:
Higher plants use several classes of blue light receptors to modulate a wide variety of physiological responses. Among them, both the phototropins and members of the Zeitlupe (ZTL) family use light oxygen voltage (LOV) photosensory domains. In Arabidopsis, these families comprise phot1, phot2 and ZTL, LOV Kelch Protein 2 (LKP2), and Flavin-binding Kelch F-box1 (FKF1). It has now been convincingly shown that blue-light-induced autophosphorylation of the phot1 kinase domain is an essential step in signal transduction. Recent experiments also shed light on the partially distinct photosensory specificities of phot1 and phot2. Phototropin signaling branches rapidly following photoreceptor activation to mediate distinct responses such as chloroplast movements or phototropism. Light activation of the LOV domain in ZTL family members modulates their capacity to interact with GIGANTEA (GI) and their ubiquitin E3 ligase activity. A complex between GI and FKF1 is required to trigger the degradation of a repressor of CO (CONSTANS) expression and thus modulates flowering time. In contrast, light-regulated complex formation between ZTL and GI appears to limit the capacity of ZTL to degrade its targets, which are part of the circadian oscillator.
Resumo:
Small ubiquitin-like modifier (SUMO) conjugation affects a broad range of processes in plants, including growth, flower initiation, pathogen defense, and responses to abiotic stress. Here, we investigate in vivo and in vitro a SUMO conjugating enzyme with a Cys to Ser change in the active site, and show that it has a dominant negative effect. In planta expression significantly perturbs normal development, leading to growth retardation, early flowering and gene expression changes. We suggest that the mutant protein can serve as a probe to investigate sumoylation, also in plants for which poor genetic infrastructure precludes analysis via loss-of-function mutants.