109 resultados para Digital radiology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present dual-wavelength Digital Holographic Microscopy (DHM) measurements on a certified 8.9 nm high Chromium thin step sample and demonstrate sub-nanometer axial accuracy. We introduce a modified DHM Reference Calibrated Hologram (RCH) reconstruction algorithm taking into account amplitude contributions. By combining this with a temporal averaging procedure and a specific dual-wavelength DHM arrangement, it is shown that specimen topography can be measured with an accuracy, defined as the axial standard deviation, reduced to at least 0.9 nm. Indeed, it is reported that averaging each of the two wavefronts recorded with real-time dual-wavelength DHM can provide up to 30% spatial noise reduction for the given configuration, thanks to their non-correlated nature. ©2008 COPYRIGHT SPIE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four standard radiation qualities (from RQA 3 to RQA 9) were used to compare the imaging performance of a computed radiography (CR) system (general purpose and high resolution phosphor plates of a Kodak CR 9000 system), a selenium-based direct flat panel detector (Kodak Direct View DR 9000), and a conventional screen-film system (Kodak T-MAT L/RA film with a 3M Trimax Regular screen of speed 400) in conventional radiography. Reference exposure levels were chosen according to the manufacturer's recommendations to be representative of clinical practice (exposure index of 1700 for digital systems and a film optical density of 1.4). With the exception of the RQA 3 beam quality, the exposure levels needed to produce a mean digital signal of 1700 were higher than those needed to obtain a mean film optical density of 1.4. In spite of intense developments in the field of digital detectors, screen-film systems are still very efficient detectors for most of the beam qualities used in radiology. An important outcome of this study is the behavior of the detective quantum efficiency of the digital radiography (DR) system as a function of beam energy. The practice of users to increase beam energy when switching from a screen-film system to a CR system, in order to improve the compromise between patient dose and image quality, might not be appropriate when switching from screen-film to selenium-based DR systems.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract We introduce a label-free technology based on digital holographic microscopy (DHM) with applicability for screening by imaging, and we demonstrate its capability for cytotoxicity assessment using mammalian living cells. For this first high content screening compatible application, we automatized a digital holographic microscope for image acquisition of cells using commercially available 96-well plates. Data generated through both label-free DHM imaging and fluorescence-based methods were in good agreement for cell viability identification and a Z'-factor close to 0.9 was determined, validating the robustness of DHM assay for phenotypic screening. Further, an excellent correlation was obtained between experimental cytotoxicity dose-response curves and known IC values for different toxic compounds. For comparable results, DHM has the major advantages of being label free and close to an order of magnitude faster than automated standard fluorescence microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Many countries used the PGMI (P=perfect, G=good, M=moderate, I=inadequate) classification system for assessing the quality of mammograms. Limits inherent to the subjectivity of this classification have been shown. Prior to introducing this system in Switzerland, we wanted to better understand the origin of this subjectivity in order to minimize it. Our study aimed at identifying the main determinants of the variability of the PGMI system and which criteria are the most subjected to subjectivity. Methods and Materials: A focus group composed of 2 experienced radiographers and 2 radiologists specified each PGMI criterion. Ten raters (6 radiographers and 4 radiologists) evaluated twice a panel of 40 randomly selected mammograms (20 analogic and 20 digital) according to these specified PGMI criteria. The PGMI classification was assessed and the intra- and inter-rater reliability was tested for each professional group (radiographer vs radiologist), image technology (analogic vs digital) and PGMI criterion. Results: Some 3,200 images were assessed. The intra-rater reliability appears to be weak, particularly in respect to inter-rater variability. Subjectivity appears to be largely independent of the professional group and image technology. Aspects of the PGMI classification criteria most subjected to variability were identified. Conclusion: Post-test discussions enabled to specify more precisely some criteria. This should reduce subjectivity when applying the PGMI classification system. A concomitant, important effort in training radiographers is also necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective dose delivered to the patient was determined, by modeling, for 257 types of examinations covering the different modalities of diagnostic and interventional radiology. The basic operational dosimetric quantities considered were obtained from the parameters of the examinations on the basis of dosimetric models. These models required a precise characterization of each examination. The operational dosimetric quantities were converted into doses to organs and effective doses using appropriate conversion factors. The determination of the collective effective dose to the Swiss population requires a number of corrections to account for the variability of several parameters: sensitivity of the detection system, age, gender, and build of the patient. The use of various dosimetric models is illustrated in this paper for a limited number of examination types covering the different radiological modalities, for which the established typical effective doses are given. With regard to individual doses, the study indicated that the average effective doses per type of examination can be classified into three levels: (a) the weakly irradiating examinations (less than 0.1 mSv), which represent 78% of the examinations and 4% of the collective dose, (b) the moderately irradiating examinations (between 0.1 mSv and 10 mSv), which represent 21% of the examinations and 72% of the collective dose, (c) the strongly irradiating examinations (more than 10 mSv), which represent 1% of the examinations and 24% of the collective dose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of interventional radiology (IR) procedures in the 20th century has demonstrated significant advantages over surgery procedures. As a result, their number is continuously rising in diagnostic, as well as, in therapy field and is connected with progress in highly sophisticated equipment used for these purposes. Nowadays, in the European countries more than 400 fluoroscopically guided IR procedures were identified with a 10-12% increase in the number of IR examinations every year (UNSCEAR, 2010). Depending on the complexity of the different types of the interventions large differences in the radiation doses of the staff are observed.The staff that carries out IR procedures is likely to receive relatively high radiation doses, because IR procedures require the operator to remain close to the patient and close to the primary radiation beam. In spite of the fact that the operator is shielded by protective apron, the hands, eyes and legs remain practically unshielded. For this reason, one of the aims of the ORAMED project was to provide a set of standardized data on extremity doses for the personnel that are involved in IR procedures and to optimize their protection by evaluating the various factors that affect the doses. In the framework of work package 1 of the ORAMED project the impact of protective equipment, tube configuration and access routes were analyzed for the selected IR procedures. The position of maximum dose measured is also investigated. The results of the extremity doses in IR workplaces are presented in this study together with the influence of the above mentioned parameters on the doses.