60 resultados para Davis, Natalie Zemon
Resumo:
Soluble MHC-peptide complexes, commonly known as tetramers, allow the detection and isolation of antigen-specific T cells. Although other types of soluble MHC-peptide complexes have been introduced, the most commonly used MHC class I staining reagents are those originally described by Altman and Davis. As these reagents have become an essential tool for T cell analysis, it is important to have a large repertoire of such reagents to cover a broad range of applications in cancer research and clinical trials. Our tetramer collection currently comprises 228 human and 60 mouse tetramers and new reagents are continuously being added. For the MHC II tetramers, the list currently contains 21 human (HLA-DR, DQ and DP) and 5 mouse (I-A(b)) tetramers. Quantitative enumeration of antigen-specific T cells by tetramer staining, especially at low frequencies, critically depends on the quality of the tetramers and on the staining procedures. For conclusive longitudinal monitoring, standardized reagents and analysis protocols need to be used. This is especially true for the monitoring of antigen-specific CD4+ T cells, as there are large variations in the quality of MHC II tetramers and staining conditions. This commentary provides an overview of our tetramer collection and indications on how tetramers should be used to obtain optimal results.
Resumo:
Résumé La dérégulation de c-Myc est un événement fréquent de la transformation cellulaire. Une régulation positive de cette oncoprotéine a été démontrée dans divers mélanomes cutanés primaires et métastatiques et est associée à un pronostic défavorable (Grover et al., 1996; Zhuang et al., 2008). c-Myc est considéré comme une molécule centrale impliquée dans plusieurs processus de l'homéostasie cellulaire. En raison de sa contribution importante dans la progression tumorale, la fonction de c-Myc a été étudiée intensément. Cependant nous connaissons peu le rôle de ce facteur de transcription dans l'embryogenèse et dans la spécification tissulaire. Un déficit total de c-Myc pendant l'embryogenèse conduit à la mort embryonnaire avant 10.5 jours de gestation. Cette mort est causée par de multiples imperfections du développement touchant la taille de l'embryon, le coeur, le péricarde, le tube neural et les cellules sanguines (Davis et al., 1993; Trumpp et al., 2001). Récemment, il a été montré que la plupart de ces anomalies sont secondaires et résultent d'une insuffisance du placenta dans les embryons c-myc-/- (Dubois et al., 2008). Sachant que c-Myc est important dans la maintenance des lignées de la crête neurale (Wei et al., 2007), nous nous sommes intéressés au rôle de c-Myc dans le développement des cellules pigmentaires et à leur homéostasie après la naissance. Un allèle floxé de c-myc (Trumpp et al., 2001) a été utilisé pour supprimer ce gène spécifiquement dans la lignée mélanocytaire à l'aide d'une souris transgénique Tyr::Cre (Delmas et al., 2003). L'ablation des deux allèles de c-myc dans les mélanocytes des souris c-myccKO conduit au phénotype de grisonnement des poils, observé directement après la naissance et associé à une diminution du nombre de mélanocytes dans le bulbe des follicules pileux. Les cellules pigmentaires restantes expriment les marqueurs mélanogéniques (Tyr, TRP-1, Dct and MITF) et semblent être fonctionnelles puisqu'elles peuvent produire et transférer la mélanine. De plus, la capacité de prolifération des mélanocytes déficients en c-Myc dans le bulbe des follicules pileux ne semble pas être affectée chez les nouveaux-nés. Les cellules souches mélanocytaires sont présentes, mais en nombre réduit, dans le bulge des follicules pileux à la fin de la morphogenèse chez les souris c-myccKO âgées de huit jours. Ces cellules sont maintenues sans changement durant le premier cycle pileux (vérifié à l'âge de trente jours), ce qui sous-entend que la fonction de c-Myc n'est pas nécessaire pour ce processus. Ceci explique pourquoi, en supposant que des cellules souches mélanocytaires fonctionnelles sont présentes dans la peau, nous n'observons pas de dilution de couleur de la robe liée à l'âge. Cependant, la présence de ces cellules souches mélanocytaires dans la peau c-myccKO ne suffit pas à assurer une quantité normale de mélanocytes différenciés dans le bulbe des follicules pileux. Cette population de cellules pigmentaires matures est sévèrement affectée par la suppression de c-Myc, ce qui contribue amplement au phénotype de grisonnement des poils. De plus, c-Myc paraît être important pour le développement des mélanocytes. Ainsi, le nombre de mélanoblastes diminue dans les embryons c-myccKO à partir du douzième jour de gestation. A treize jours de gestation, au stade où les mélanoblastes pénètrent dans l'épiderme et prolifèrent, les mélanoblastes déficients en c-Myc ne s'adaptent pas aux signaux de prolifération et se retrouvent en nombre réduit dans l'épiderme. Finalement, nous nous sommes intéressés, au rôle de N-Myc, un homologue proche de c-Myc, dans la lignée mélanocytaire. Nos expériences ont montré que. N-Myc était superflu pour le développement et l'homéostasie des mélanocytes, une seule copie du gène c-myc étant suffisante pour maintenir une pigmentation normale de la robe des souris c-mycc-myccKO/+~N_ myccKO/KO. Cependant, le rôle essentiel de N-Myc dans la maintenance des cellules mélanocytaires précurseurs apparaît lorsque c-Myc est absent, puisque la suppression simultanée des deux Myc résulte en une perte complète de la coloration de la robe. Ceci implique la présence d'un mécanisme compensatoire entre c- et N-Myc dans la lignée mélanocytaire, avec un rôle prédominant de c-Myc. Summary Deregulation of c-Myc is known to be a common event in cellular transformation. Upregulation of this oncoprotein was shown in a variety of primary and metastatic cutaneous melanomas and has been associated with a poor prognosis (Grover et al., 1996; Zhuang et al., 2008). c-myc is seen as a central molecule involved in many aspects of cellular homeostasis. c-Myc function has been intensively studied mostly because of its significant contribution to tumour progression. However little is known on the role of this transcription factor in embryogenesis and tissue specification. Complete loss of c-Myc during embryogenesis results in embryonic death before E10.5 due to multiple developmental defects including embryonic size, heart, pericardium, neural tube and blood cells (Davis et al., 1993; Trumpp et al., 2001). Recently it was discovered that most of these abnormalities are secondary and results of placental insufficiency in c-Myc-/- embryos (Dubois et al., 2008). Here, we focused on the role of c-Myc in pigment cell development and homeostasis after birth, knowing that c-Myc is important in the maintenance of neural crest lineages (Wei et al., 2007). A floxed allele of c-Myc (Trumpp et al., 2001) was used to specifically delete this gene in the melanocyte lineage using Tyr::Cre transgenic mice (Delmas et al., 2003). Removal of both c-Myc alleles in melanocytes of c-MyccKO mouse led to the grey hair phenotype which is seen directly after birth and was associated with a decrease in the melanocyte number in the bulb of the hair follicle. The remaining population of pigment cells express melanogenic markers (Tyr, TRP-1, Dct and MITF) and seem functionally normal since they can produce and transfer melanin. Furthermore proliferation capacity of c-Myc deficient melanocytes in the bulb of hair follicle seems not to be affected in newborn animals. Melanocyte stem cells (MSCs) are present but reduced in numbers in the bulge of the hair follicle at the end of morphogenesis in 8 days old c-MyccKO mice. These cells are maintained through the first hair cycle (as verified at P30) without any further changes, suggesting that c-Myc function is not required for this process. This explains why we did not detect any agerelated coat color dilution, assuming a presence of functional MSCs in the skin. Importantly, presence of MSCs in c-MyccKO skin was not sufficient for assuring a normal number of differentiated melanocytes in the bulb of the hair follicle. This population of mature pigmented cells is severely affected upon c-myc deletion thus largely contributing to the grey hair phenotype. Moreover, c-Myc appears to be important for melanocyte development. Thus, melanoblast number is affected in c-MyccKO embryos day 12 of gestation onwards. At E13.5, when melanoblasts enter the epidermis and proliferate, c-myc deficient melanoblasts failed to adapt to proliferation signals and are therefore reduced in number in the epidermis. Finally, we addressed the role of N-Myc, a closest homologue of c-Myc, in the melanocyte lineage. In these experiments, N-Myc was dispensable for melanocyte development and homeostasis, and even one copy of the c-myc gene was sufficient to maintain normal coat color pigmentation in c-mycc-mycCKO/+ ,N-myccKO/KO mice. However the crucial role of N-Myc in maintenance of melanocyte precursor cells became apparent when c-myc is eliminated since simultaneous deletion of both Myc results in complete loss of coat color pigmentation. This suggests compensatory mechanisms between c- and N-Myc with a predominant role of c-Myc in melanocyte lineage.
Resumo:
PURPOSE: Tuberculous optic neuropathy may follow infection with Mycobacterium tuberculosis or administration of the bacille Calmette-Guerin. However, this condition is not well described in the ophthalmic literature. METHODS: Ophthalmologists, identified through professional electronic networks or previous publications, collected standardized clinical data relating to 62 eyes of 49 patients who they had managed with tuberculous optic neuropathy. RESULTS: Tuberculous optic neuropathy was most commonly manifested as papillitis (51.6 %), neuroretinitis (14.5 %), and optic nerve tubercle (11.3 %). Uveitis was an additional ocular morbidity in 88.7 % of eyes. In 36.7 % of patients, extraocular tuberculosis was present. The majority of patients (69.4 %) had resided in and/or traveled to an endemic area. Although initial visual acuity was 20/50 or worse in 62.9 % of 62 eyes, 76.7 % of 60 eyes followed for a median of 12 months achieved visual acuities of 20/40 or better. Visual field defects were reported for 46.8 % of eyes, but these defects recovered in 63.2 % of 19 eyes with follow-up. CONCLUSION: Visual recovery from tuberculous optic neuropathy is common, if the diagnosis is recognized and appropriate treatment is instituted. A tuberculous etiology should be considered when evaluating optic neuropathy in persons from endemic areas.
Resumo:
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.
Resumo:
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Resumo:
In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.
Resumo:
The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.
Resumo:
BACKGROUND: Artemether-lumefantrine is the most widely used artemisinin-based combination therapy for malaria, although treatment failures occur in some regions. We investigated the effect of dosing strategy on efficacy in a pooled analysis from trials done in a wide range of malaria-endemic settings. METHODS: We searched PubMed for clinical trials that enrolled and treated patients with artemether-lumefantrine and were published from 1960 to December, 2012. We merged individual patient data from these trials by use of standardised methods. The primary endpoint was the PCR-adjusted risk of Plasmodium falciparum recrudescence by day 28. Secondary endpoints consisted of the PCR-adjusted risk of P falciparum recurrence by day 42, PCR-unadjusted risk of P falciparum recurrence by day 42, early parasite clearance, and gametocyte carriage. Risk factors for PCR-adjusted recrudescence were identified using Cox's regression model with frailty shared across the study sites. FINDINGS: We included 61 studies done between January, 1998, and December, 2012, and included 14 327 patients in our analyses. The PCR-adjusted therapeutic efficacy was 97·6% (95% CI 97·4-97·9) at day 28 and 96·0% (95·6-96·5) at day 42. After controlling for age and parasitaemia, patients prescribed a higher dose of artemether had a lower risk of having parasitaemia on day 1 (adjusted odds ratio [OR] 0·92, 95% CI 0·86-0·99 for every 1 mg/kg increase in daily artemether dose; p=0·024), but not on day 2 (p=0·69) or day 3 (0·087). In Asia, children weighing 10-15 kg who received a total lumefantrine dose less than 60 mg/kg had the lowest PCR-adjusted efficacy (91·7%, 95% CI 86·5-96·9). In Africa, the risk of treatment failure was greatest in malnourished children aged 1-3 years (PCR-adjusted efficacy 94·3%, 95% CI 92·3-96·3). A higher artemether dose was associated with a lower gametocyte presence within 14 days of treatment (adjusted OR 0·92, 95% CI 0·85-0·99; p=0·037 for every 1 mg/kg increase in total artemether dose). INTERPRETATION: The recommended dose of artemether-lumefantrine provides reliable efficacy in most patients with uncomplicated malaria. However, therapeutic efficacy was lowest in young children from Asia and young underweight children from Africa; a higher dose regimen should be assessed in these groups. FUNDING: Bill & Melinda Gates Foundation.
Resumo:
The EpiNet project has been established to facilitate investigator-initiated clinical research in epilepsy, to undertake epidemiological studies, and to simultaneously improve the care of patients who have records created within the EpiNet database. The EpiNet database has recently been adapted to collect detailed information regarding status epilepticus. An incidence study is now underway in Auckland, New Zealand in which the incidence of status epilepticus in the greater Auckland area (population: 1.5 million) will be calculated. The form that has been developed for this study can be used in the future to collect information for randomized controlled trials in status epilepticus. This article is part of a Special Issue entitled "Status Epilepticus".
Resumo:
BACKGROUND: Obesity has been shown to be associated with depression and it has been suggested that higher body mass index (BMI) increases the risk of depression and other common mental disorders. However, the causal relationship remains unclear and Mendelian randomisation, a form of instrumental variable analysis, has recently been employed to attempt to resolve this issue. AIMS: To investigate whether higher BMI increases the risk of major depression. METHOD: Two instrumental variable analyses were conducted to test the causal relationship between obesity and major depression in RADIANT, a large case-control study of major depression. We used a single nucleotide polymorphism (SNP) in FTO and a genetic risk score (GRS) based on 32 SNPs with well-established associations with BMI. RESULTS: Linear regression analysis, as expected, showed that individuals carrying more risk alleles of FTO or having higher score of GRS had a higher BMI. Probit regression suggested that higher BMI is associated with increased risk of major depression. However, our two instrumental variable analyses did not support a causal relationship between higher BMI and major depression (FTO genotype: coefficient -0.03, 95% CI -0.18 to 0.13, P = 0.73; GRS: coefficient -0.02, 95% CI -0.11 to 0.07, P = 0.62). CONCLUSIONS: Our instrumental variable analyses did not support a causal relationship between higher BMI and major depression. The positive associations of higher BMI with major depression in probit regression analyses might be explained by reverse causality and/or residual confounding.
Resumo:
Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.