56 resultados para Canova-Hansen
Resumo:
BACKGROUND: Patients with type 1 diabetes and nephropathy maintain an excess cardiovascular mortality compared with diabetic patients with normoalbuminuria. We sought to evaluate coronary and aortic atherosclerosis in a cohort of asymptomatic type 1 diabetic patients with and without diabetic nephropathy using cardiovascular magnetic resonance imaging. METHODS AND RESULTS: In a cross-sectional study, 136 subjects with long-standing type 1 diabetes without symptoms or history of cardiovascular disease, including 63 patients (46%) with nephropathy and 73 patients with normoalbuminuria, underwent cardiovascular magnetic resonance imaging. All subjects underwent cardiac exercise testing and noninvasive tests for peripheral artery disease and autonomic neuropathy. Coronary artery stenoses were identified in 10% of subjects with nephropathy (versus 0% with normoalbuminuria; P=0.007). Coronary plaque burden, expressed as right coronary artery mean wall thickness (1.7+/-0.3 versus 1.3+/-0.2 mm; P<0.001) and maximum right coronary artery wall thickness (2.2+/-0.5 versus 1.6+/-0.3 mm; P<0.001), was greater in subjects with nephropathy. The prevalence of thoracic (3% versus 0%; P=0.28) and abdominal aortic plaque (22% versus 16%; P=0.7) was similar in both groups. Subjects with and without abdominal aortic plaques had similar coronary plaque burden. CONCLUSIONS: In asymptomatic type 1 diabetes, cardiovascular magnetic resonance imaging reveals greater coronary plaque burden in subjects with nephropathy compared with those with normoalbuminuria.
Resumo:
FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177,330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m(2), P = 1.9 × 10(-105)), and all participants (0.30 [0.30, 0.35] kg/m(2), P = 3.6 × 10(-107)). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] %, P = 2.4 × 10(-16)), and relative weak associations with lower total energy intake (-6.4 [-10.1, -2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (-0.07 [-0.11, -0.02] %, P = 0.004). The associations with protein (P = 7.5 × 10(-9)) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposity.
Resumo:
BACKGROUND: Increasing incidence of head and neck cancer (HNC) in young adults has been reported. We aimed to compare the role of major risk factors and family history of cancer in HNC in young adults and older patients. METHODS: We pooled data from 25 case-control studies and conducted separate analyses for adults ≤45 years old ('young adults', 2010 cases and 4042 controls) and >45 years old ('older adults', 17 700 cases and 22 704 controls). Using logistic regression with studies treated as random effects, we estimated adjusted odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: The young group of cases had a higher proportion of oral tongue cancer (16.0% in women; 11.0% in men) and unspecified oral cavity / oropharynx cancer (16.2%; 11.1%) and a lower proportion of larynx cancer (12.1%; 16.6%) than older adult cases. The proportions of never smokers or never drinkers among female cases were higher than among male cases in both age groups. Positive associations with HNC and duration or pack-years of smoking and drinking were similar across age groups. However, the attributable fractions (AFs) for smoking and drinking were lower in young when compared with older adults (AFs for smoking in young women, older women, young men and older men, respectively, = 19.9% (95% CI = 9.8%, 27.9%), 48.9% (46.6%, 50.8%), 46.2% (38.5%, 52.5%), 64.3% (62.2%, 66.4%); AFs for drinking = 5.3% (-11.2%, 18.0%), 20.0% (14.5%, 25.0%), 21.5% (5.0%, 34.9%) and 50.4% (46.1%, 54.3%). A family history of early-onset cancer was associated with HNC risk in the young [OR = 2.27 (95% CI = 1.26, 4.10)], but not in the older adults [OR = 1.10 (0.91, 1.31)]. The attributable fraction for family history of early-onset cancer was 23.2% (8.60% to 31.4%) in young compared with 2.20% (-2.41%, 5.80%) in older adults. CONCLUSIONS: Differences in HNC aetiology according to age group may exist. The lower AF of cigarette smoking and alcohol drinking in young adults may be due to the reduced length of exposure due to the lower age. Other characteristics, such as those that are inherited, may play a more important role in HNC in young adults compared with older adults.
Resumo:
Current standard treatments for metastatic colorectal cancer (CRC) are based on combination regimens with one of the two chemotherapeutic drugs, irinotecan or oxaliplatin. However, drug resistance frequently limits the clinical efficacy of these therapies. In order to gain new insights into mechanisms associated with chemoresistance, and departing from three distinct CRC cell models, we generated a panel of human colorectal cancer cell lines with acquired resistance to either oxaliplatin or irinotecan. We characterized the resistant cell line variants with regards to their drug resistance profile and transcriptome, and matched our results with datasets generated from relevant clinical material to derive putative resistance biomarkers. We found that the chemoresistant cell line variants had distinctive irinotecan- or oxaliplatin-specific resistance profiles, with non-reciprocal cross-resistance. Furthermore, we could identify several new, as well as some previously described, drug resistance-associated genes for each resistant cell line variant. Each chemoresistant cell line variant acquired a unique set of changes that may represent distinct functional subtypes of chemotherapy resistance. In addition, and given the potential implications for selection of subsequent treatment, we also performed an exploratory analysis, in relevant patient cohorts, of the predictive value of each of the specific genes identified in our cellular models.
Resumo:
The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.
Resumo:
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.
Resumo:
Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatment.
Resumo:
BACKGROUND: Pregnant women with asthma need to take medication during pregnancy. OBJECTIVE: We sought to identify whether there is an increased risk of specific congenital anomalies after exposure to antiasthma medication in the first trimester of pregnancy. METHODS: We performed a population-based case-malformed control study testing signals identified in a literature review. Odds ratios (ORs) of exposure to the main groups of asthma medication were calculated for each of the 10 signal anomalies compared with registrations with nonchromosomal, nonsignal anomalies as control registrations. In addition, exploratory analyses were done for each nonsignal anomaly. The data set included 76,249 registrations of congenital anomalies from 13 EUROmediCAT registries. RESULTS: Cleft palate (OR, 1.63; 95% CI, 1.05-2.52) and gastroschisis (OR, 1.89; 95% CI, 1.12-3.20) had significantly increased odds of exposure to first-trimester use of inhaled β2-agonists compared with nonchromosomal control registrations. Odds of exposure to salbutamol were similar. Nonsignificant ORs of exposure to inhaled β2-agonists were found for spina bifida, cleft lip, anal atresia, severe congenital heart defects in general, or tetralogy of Fallot. None of the 4 literature signals of exposure to inhaled steroids were confirmed (cleft palate, cleft lip, anal atresia, and hypospadias). Exploratory analyses found an association between renal dysplasia and exposure to the combination of long-acting β2-agonists and inhaled corticosteroids (OR, 3.95; 95% CI, 1.99-7.85). CONCLUSIONS: The study confirmed increased odds of first-trimester exposure to inhaled β2-agonists for cleft palate and gastroschisis and found a potential new signal for renal dysplasia associated with combined long-acting β2-agonists and inhaled corticosteroids. Use of inhaled corticosteroids during the first trimester of pregnancy seems to be safe in relation to the risk for a range of specific major congenital anomalies.
Resumo:
Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.