122 resultados para Calibration measurements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern sonic logging tools designed for shallow environmental and engineering applications allow for P-wave phase velocity measurements over a wide frequency band. Methodological considerations indicate that, for saturated unconsolidated sediments in the silt to sand range and source frequencies ranging from approximately 1 to 30 kHz, the observable poro-elastic P-wave velocity dispersion is sufficiently pronounced to allow for reliable first-order estimations of the underlying permeability structure. These predictions have been tested on and verified for a surficial alluvial aquifer. Our results indicate that, even without any further calibration, the thus obtained permeability estimates as well as their variabilities within the pertinent lithological units are remarkably close to those expected based on the corresponding granulometric characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical demand for a device to monitor Blood Pressure (BP) in ambulatory scenarios with minimal use of inflation cuffs is increasing. Based on the so-called Pulse Wave Velocity (PWV) principle, this paper introduces and evaluates a novel concept of BP monitor that can be fully integrated within a chest sensor. After a preliminary calibration, the sensor provides non-occlusive beat-by-beat estimations of Mean Arterial Pressure (MAP) by measuring the Pulse Transit Time (PTT) of arterial pressure pulses travelling from the ascending aorta towards the subcutaneous vasculature of the chest. In a cohort of 15 healthy male subjects, a total of 462 simultaneous readings consisting of reference MAP and chest PTT were acquired. Each subject was recorded at three different days: D, D+3 and D+14. Overall, the implemented protocol induced MAP values to range from 80 ± 6 mmHg in baseline, to 107 ± 9 mmHg during isometric handgrip maneuvers. Agreement between reference and chest-sensor MAP values was tested by using intraclass correlation coefficient (ICC = 0.78) and Bland-Altman analysis (mean error = 0.7 mmHg, standard deviation = 5.1 mmHg). The cumulative percentage of MAP values provided by the chest sensor falling within a range of ±5 mmHg compared to reference MAP readings was of 70%, within ±10 mmHg was of 91%, and within ±15mmHg was of 98%. These results point at the fact that the chest sensor complies with the British Hypertension Society (BHS) requirements of Grade A BP monitors, when applied to MAP readings. Grade A performance was maintained even two weeks after having performed the initial subject-dependent calibration. In conclusion, this paper introduces a sensor and a calibration strategy to perform MAP measurements at the chest. The encouraging performance of the presented technique paves the way towards an ambulatory-compliant, continuous and non-occlusive BP monitoring system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To assess the inter/intraobserver variability of apparent diffusion coefficient (ADC) measurements in treated hepatic lesions and to compare ADC measurements in the whole lesion and in the area with the most restricted diffusion (MRDA). MATERIALS AND METHODS: Twenty-five patients with treated malignant liver lesions were examined on a 3.0T machine. After agreeing on the best ADC image, two readers independently measured the ADC values in the whole lesion and in the MRDA. These measurements were repeated 1 month later. The Bland-Altman method, Spearman correlation coefficients, and the Wilcoxon signed-rank test were used to evaluate the measurements. RESULTS: Interobserver variability for ADC measurements in the whole lesion and in the MRDA was 0.17 x 10(-3) mm(2)/s [-0.17, +0.17] and 0.43 x 10(-3) mm(2)/s [-0.45, +0.41], respectively. Intraobserver limits of agreement could be as low as [-0.10, +0.12] 10(-3) mm(2)/s and [-0.20, +0.33] 10(-3) mm(2)/s for measurements in the whole lesion and in the MRDA, respectively. CONCLUSION: A limited variability in ADC measurements does exist, and it should be considered when interpreting ADC values of hepatic malignancies. This is especially true for the measurements of the minimal ADC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional (3D) correction of glenoid erosion is critical to the long-term success of total shoulder replacement (TSR). In order to characterise the 3D morphology of eroded glenoid surfaces, we looked for a set of morphological parameters useful for TSR planning. We defined a scapular coordinates system based on non-eroded bony landmarks. The maximum glenoid version was measured and specified in 3D by its orientation angle. Medialisation was considered relative to the spino-glenoid notch. We analysed regular CT scans of 19 normal (N) and 86 osteoarthritic (OA) scapulae. When the maximum version of OA shoulders was higher than 10°, the orientation was not only posterior, but extended in postero-superior (35%), postero-inferior (6%) and anterior sectors (4%). The medialisation of the glenoid was higher in OA than normal shoulders. The orientation angle of maximum version appeared as a critical parameter to specify the glenoid shape in 3D. It will be very useful in planning the best position for the glenoid in TSR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radioactive concentrations of (166m)Ho, (134)Cs and (133)Ba solutions have been standardised using a 4πβ-4πγ coincidence counting system we have recently set up. The detection in the beta channel is performed using various geometries of a UPS-89 plastic scintillator optically coupled to a selected low-noise 1in. diameter photomultiplier tube. The light-tight thin capsule that encloses this beta detector is housed within the well of a 5in.×5in. NaI(Tl) monocrystal detector. The beta detection efficiency can be varied either by optical filtering or electronic discrimination when the electrons loose all their energy in the plastic scintillator. This 4πβ-4πγ coincidence system improves on our 4πβ(PC)-γ system in that its sample preparation is less labour intensive, it yields larger beta- and gamma-counting efficiencies thus enabling the standardisation of low activity sources with good statistics in reasonable time, and it makes standardising short-lived radionuclides easier. The resulting radioactive concentrations of (166m)Ho, (134)Cs and (133)Ba are found to agree with those measured with other primary measurement methods thus validating our 4πβ-4πγ coincidence counting system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Accurate characterization of the spatial distribution of hydrological properties in heterogeneous aquifers at a range of scales is a key prerequisite for reliable modeling of subsurface contaminant transport, and is essential for designing effective and cost-efficient groundwater management and remediation strategies. To this end, high-resolution geophysical methods have shown significant potential to bridge a critical gap in subsurface resolution and coverage between traditional hydrological measurement techniques such as borehole log/core analyses and tracer or pumping tests. An important and still largely unresolved issue, however, is how to best quantitatively integrate geophysical data into a characterization study in order to estimate the spatial distribution of one or more pertinent hydrological parameters, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first develop a strategy for the assimilation of several types of hydrogeophysical data having varying degrees of resolution, subsurface coverage, and sensitivity to the hydrologic parameter of interest. In this regard a novel simulated annealing (SA)-based conditional simulation approach was developed and then tested in its ability to generate realizations of porosity given crosshole ground-penetrating radar (GPR) and neutron porosity log data. This was done successfully for both synthetic and field data sets. A subsequent issue that needed to be addressed involved assessing the potential benefits and implications of the resulting porosity realizations in terms of groundwater flow and contaminant transport. This was investigated synthetically assuming first that the relationship between porosity and hydraulic conductivity was well-defined. Then, the relationship was itself investigated in the context of a calibration procedure using hypothetical tracer test data. Essentially, the relationship best predicting the observed tracer test measurements was determined given the geophysically derived porosity structure. Both of these investigations showed that the SA-based approach, in general, allows much more reliable hydrological predictions than other more elementary techniques considered. Further, the developed calibration procedure was seen to be very effective, even at the scale of tomographic resolution, for predictions of transport. This also held true at locations within the aquifer where only geophysical data were available. This is significant because the acquisition of hydrological tracer test measurements is clearly more complicated and expensive than the acquisition of geophysical measurements. Although the above methodologies were tested using porosity logs and GPR data, the findings are expected to remain valid for a large number of pertinent combinations of geophysical and borehole log data of comparable resolution and sensitivity to the hydrological target parameter. Moreover, the obtained results allow us to have confidence for future developments in integration methodologies for geophysical and hydrological data to improve the 3-D estimation of hydrological properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the adverse impact of image noise on the perception of important clinical details in digital mammography, routine quality control measurements should include an evaluation of noise. The European Guidelines, for example, employ a second-order polynomial fit of pixel variance as a function of detector air kerma (DAK) to decompose noise into quantum, electronic and fixed pattern (FP) components and assess the DAK range where quantum noise dominates. This work examines the robustness of the polynomial method against an explicit noise decomposition method. The two methods were applied to variance and noise power spectrum (NPS) data from six digital mammography units. Twenty homogeneously exposed images were acquired with PMMA blocks for target DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the effects of data weighting and squared fit coefficients during the curve fitting, the influence of the additional filter material (2 mm Al versus 40 mm PMMA) and noise de-trending. Finally, spatial stationarity of noise was assessed.Data weighting improved noise model fitting over large DAK ranges, especially at low detector exposures. The polynomial and explicit decompositions generally agreed for quantum and electronic noise but FP noise fraction was consistently underestimated by the polynomial method. Noise decomposition as a function of position in the image showed limited noise stationarity, especially for FP noise; thus the position of the region of interest (ROI) used for noise decomposition may influence fractional noise composition. The ROI area and position used in the Guidelines offer an acceptable estimation of noise components. While there are limitations to the polynomial model, when used with care and with appropriate data weighting, the method offers a simple and robust means of examining the detector noise components as a function of detector exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canadian healthcare is changing. Over the course of the past decade, the Health Care in Canada Survey (HCIC) has annually measured the reactions of the public and professional stakeholders to many of these change forces. In HCIC 2008, for the first time, the public's perception of their health status and all stakeholders' views of the burden and effective management of chronic diseases were sought. Overall, Canadians perceive themselves as healthy, with 84% of adults reporting good-to-excellent health. However, good health decreased with age as the occurrence of chronic illness rose, from 12% in the age group 18-24 to 65% for the population =65 years. More than 70% of all stakeholders were strongly or somewhat supportive of the implementation of coordinated care, or disease management programs, to improve the care of patients with chronic illnesses. Concordant support was also expressed for key disease management components, including coordinated interventions to improve home, community and self-care; increased wellness promotion; and increased use of clinical measurements and feedback to all stakeholders. However, there were also important areas of non-concordance. For example, the public and doctors consistently expressed less support than other stakeholders for the value of team care, including the use of non-physician professionals to provide patient care; increased patient involvement in decision-making; and the use of electronic health records to facilitate communication. The actual participation in disease management programs averaged 34% for professionals and 25% for the public. We conclude that chronic diseases are common, age-related and burdensome in Canada. Disease management or coordinated intervention often delivered by teams is also relatively common, despite its less-than-universal acceptance by all stakeholders. Further insights are needed, particularly into the variable perceptions of the value and efficacy of team-delivered healthcare and its important components.